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ABSTRACT
Espresso is a document-oriented distributed data serving
platform that has been built to address LinkedIn’s require-
ments for a scalable, performant, source-of-truth primary
store. It provides a hierarchical document model, transac-
tional support for modifications to related documents, real-
time secondary indexing, on-the-fly schema evolution and
provides a timeline consistent change capture stream. This
paper describes the motivation and design principles involved
in building Espresso, the data model and capabilities ex-
posed to clients, details of the replication and secondary
indexing implementation and presents a set of experimen-
tal results that characterize the performance of the system
along various dimensions.

When we set out to build Espresso, we chose to apply best
practices in industry, already published works in research
and our own internal experience with different consistency
models. Along the way, we built a novel generic distributed
cluster management framework, a partition-aware change-
capture pipeline and a high-performance inverted index im-
plementation.
Categories and Subject Descriptors: C.2.4 [Distributed
Systems]: Distributed databases; H.2.4 [Database Man-
agement]: Systems–concurrency, distributed databases
General Terms: Algorithms, Design, Performance, Relia-
bility
Keywords: Large Databases, Transactions, Secondary In-
dexing, Cluster Management, Change Data Capture, MySQL
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1. INTRODUCTION
To meet the needs of online applications, Relational Database

Management Systems (RDBMSs) have been developed and
deployed widely, providing support for data schema, rich
transactions, and enterprise scale.

In its early days, the LinkedIn data ecosystem was quite
simple. A single RDBMS contained a handful of tables for
user data such as profiles, connections, etc. This RDBMS
was augmented with two specialized systems: one provided
full text search of the corpus of user profile data, the other
provided efficient traversal of the relationship graph. These
latter two systems were kept up-to-date by Databus [14], a
change capture stream that propagates writes to the RDBMS
primary data store, in commit order, to the search and graph
clusters.

Over the years, as LinkedIn evolved, so did its data needs.
LinkedIn now provides a diverse offering of products and ser-
vices to over 200 million members worldwide, as well as a
comprehensive set of tools for our Talent Solutions and Mar-
keting Solutions businesses. The early pattern of a primary,
strongly consistent, data store that accepts reads and writes,
then generates a change capture stream to fulfill nearline
and offline processing requirements, has become a common
design pattern. Many, if not most, of the primary data re-
quirements of LinkedIn do not require the full functionality
of a RDBMS; nor can they justify the associated costs.

Using RDBMS technology has some associated pain points.
First, the existing RDBMS installation requires costly, spe-
cialized hardware and extensive caching to meet scale and
latency requirements. Second, adding capacity requires a
long planning cycle, and is difficult to do at scale with 100%
uptime. Third, product agility introduces a new set of chal-
lenges for schemas and their management. Often the data
models don’t readily map to relational normalized forms and
schema changes on the production database incur a lot of
Database Administrators (DBAs) time as well as machine
time on large datasets. All of the above add up to a costly
solution both in terms of licensing and hardware costs as
well as human operations costs.

In 2009, LinkedIn introduced Voldemort [8] to our data
ecosystem. Voldemort is inspired by Dynamo [15] and is



a simple, eventually consistent, key:value store. Voldemort
was initially used for soft-state and derived data sets and
is increasingly being used for primary data that does not
require a timeline consistent [12] change capture stream.

In early 2011, we took a step back and identified several
key patterns that were emerging from our experience with
the RDBMS and Voldemort stack that defined our require-
ments for a primary source of truth system.

• Scale and Elasticity: horizontal scale, and ability to
add capacity incrementally, with zero downtime.

• Consistency: cross-entity transactions and index con-
sistency with base data for query-after-write cases

• Integration: ability to consume a timeline consistent
change stream directly from the source-of-truth system

• Bulk Operations: ability to load/copy all or part of a
database from/to other instances, Hadoop, and other
datacenters, without downtime

• Secondary Indexing: keyword search, relational predi-
cates

• Schema Evolution: forward and backward compatible
schema evolution

• Cost to Serve: RAM provisioning proportional to ac-
tive data rather than total data size

To meet all of these requirements, we designed Espresso, a
timeline-consistent document-oriented distributed database.
Espresso has been deployed into production for several key
use-cases.

The paper is organized as follows. We present key feature
support in Section 2. We describe the data model, external
API, and bulk operations in Section 3. Architecture and
system components are presented in Section 4. We elabo-
rate system implementation in Section 5 . Lessons learned
from our software development and operational experience
are summarized in Section 8. Section 6 describes various
use-cases in production that use Espresso as the source of
truth data store. We present our experimental evaluation
of Espresso in Section 7, describe future work in Section 9,
discuss related work in Section 10, and conclude in Section
11.

2. FEATURES
As we set out to meet the requirements, we chose these

design principles as we built Espresso:

• Use proven off-the-shelf open-source components
• Learn from the design decisions of similar systems in

other companies
• Make sure operability is designed in from the beginning

In this paper, we will discuss some hard problems we did
have to solve to meet our requirements. For example, native
MySQL replication had to be modified to support our scale
and elasticity requirements, and Lucene for full-text index-
ing required modifications to use at our scale. In the design
and building of Espresso, these key capabilities required us
to engineer new solutions to meet our set of requirements.
In addition to being a scalable and elastic distributed system
with low cost to serve, the following is a list of key features
Espresso provide.

Transaction Support. Most NoSQL stores do not pro-
vide transaction support beyond a single record/document.
A large number of use-cases at Linkedin lend themselves

to a natural partitioning of the data into collections that
share a common partitioning key e.g. memberid, compa-
nyid, or groupid. Applications often require that related
entities be updated atomically. To model these use-cases,
Espresso supports a hierarchical data model and provides
transaction support on related entities.

Consistency Model. Brewer’s CAP theorem [10] states
that a distributed system can only achieve 2 out of consis-
tency, availability and partition-failure tolerance. Espresso
is built to be a source-of-truth system for primary user data
at Linkedin and needs to maintain consistency. As we de-
scribe later in this paper, Espresso follows the master-slave
model, where read and write requests for each partition are
served by the node acting as the master, while the slaves
replicate from the masters to provide durability in case of
master failure. However, using synchronous replication be-
tween replicas comes at the cost of high latency. Since
Espresso supports online user requests, maintaining low la-
tency for operations is critical. For this reason, we relax the
consistency to be timeline consistent, where the replication
between master and slave is either asynchronous or semi-
synchronous, depending on the application requirements. In
the event of a master failure, the cluster manager promotes
one of the slave replicas to be the new master and thus the
system maintains availability.

Integration with the complete data ecosystem. Pro-
viding a data plaform as a service for application developers
is a big motivation for building Espresso. An equally impor-
tant goal is to support developer agility by ensuring tight
integration with rest of the data ecosystem at Linkedin. A
large number of specialized online systems such as graph and
search indexes rely on getting a low-latency stream from the
primary system. In addition, our applications depend on of-
fline data analysis in Hadoop. Providing out-of-the-box ac-
cess to the change stream is an afterthought in many other
NoSQL solutions. In Espresso, we have made this feature a
first-class citizen. This ensures that processors in a nearline
or offline environment can be added independently, with-
out making any change to the source system. Results from
nearline or offline computation often need to be served back
to users and supporting these flows natively is also a key
capability of Espresso.

Schema Awareness and Rich Functionality. Un-
like some other NoSQL stores [2, 5] that are schema-free,
Espresso supports schema definition for the documents. En-
forcing schemas allows systems across the entire data ecosys-
tem to reason about the data in a consistent way and also
enables key features such as secondary indexing and search,
partial updates to documents and projections of fields within
documents.

Espresso avoids the rigidity of RDBMSs by allowing on-
the-fly schema evolution. It is possible to add a new field
to a document at any time and this change is backward-
compatible across the entire ecosystem. When such a change
is made, producers as well as downstream consumers of the
data do not have to change simultaneously. In an environ-
ment where rapid change and innovation is required, the
ability to make changes in production without complex pro-
cess and restrictions is essential.



3. EXTERNAL INTERFACE

3.1 Data Model
Espresso’s data model emerged out of our observations

of typical use-cases and access patterns at LinkedIn. We
wanted to provide something richer than a pure key-value
data model, while not forcing ourselves into non-scalable
patterns. To that end, we recognized the presence of two
primary forms of relationships that exist commonly in our
eco-system:

• Nested Entities: We often find a group of entities that
logically share a common nesting hierarchy. e.g. All
messages that belong to a mailbox and any statistics
associated with the mailbox, or all comments that be-
long to a discussion and the meta-data associated with
the discussion. The primary write pattern to these
entity groups involve creating new entities and/or up-
dating existing entities. Since the entities are logi-
cally related, mutations often happen in a group, and
atomicity guarantees here are very helpful in simplify-
ing the application logic. The read patterns are typ-
ically unique-key based lookups of the entities, filter-
ing queries on a collection of like entities or consistent
reads of related entities. For example, show me all the
messages in the mailbox that are marked with the flag
isInbox and sort them based on the createdOn field.

• Independent Entities: Complementary to the Nested
Entities model, we also find independent entities which
have many:many relationships. e.g. People and Jobs.
The primary write pattern to these tend to be indepen-
dent inserts/updates. Applications tend to be more
forgiving of atomicity constraints around updates to
top-level Entities, but do need guarantees that any
updates that apply to both Entities must eventually
happen. When a Person applies for a Job, the per-
son must see the effect of that write right away; in
her jobs dashboard, she must see that she has applied
for the job. The Job poster who is monitoring all job
applications for the job must eventually see that the
person has applied for the job, but the update may be
delayed.

Espresso uses a hierarchical data model to model Nested
Entities efficiently. Independent Entities with relationships
are modeled as disjoint Entities with the change capture
stream available for materializing both sides of the rela-
tionship. Semantically, the data hierarchy is composed of
Databases, Document Groups, Tables and finally Documents.
We describe these terms in more detail below:

Document. A Document is the smallest unit of data rep-
resented in Espresso. Documents logically map to entities,
are schema-ed and can have nested data-structures such as
lists, arrays and maps as fields within the document. In SQL
terms, documents are like rows in a table. They are iden-
tified by a primary key which can be composed of multiple
key parts. Document schemas allow annotations on fields for
supporting indexed access. Secondary indexing is covered in
depth in Section 5.

Table. An Espresso Table is a collection of like-schema-
ed documents. This is completely analogous to a table in a
relational database. A table defines the key structure that
is used for uniquely identifying documents that it stores. In

addition to externally defined keys, Espresso also supports
auto-generation of keys.

Document Group. Document Groups are a logical con-
cept and represent a collection of documents that live within
the same database and share a common partitioning key.
Readers familiar with MegaStore [9] will recognize the sim-
ilarity to the Entity Groups concept in the MegaStore data
model. Document Groups are not explicitly represented, but
inferred by the mere act of sharing the partitioning key. Doc-
ument Groups span across tables and form the largest unit
of transactionality that is currently supported by Espresso.
For example, one could insert a new document in the Mes-
sages table as well as update a document in the MailboxStats
table atomically, as long as both the documents are part of
the same document group (keyed by the same mailboxId).

Database. Espresso Databases are the largest unit of
data management. They are analogous to databases in any
RDMBS in that they contain tables within them. All docu-
ments within a Database are partitioned using the same par-
titioning strategy. The partitioning strategy defines the data
partitioning method, e.g. hash partitioning or range parti-
tioning, and other details such as the total number of par-
titions. Databases are physically represented by a Database
schema that encodes the required information such as the
partitioning function, number of buckets etc.

3.2 API
Espresso offers a REST API for ease of integration. In this

section, we will focus less on the details of the API and more
on the capabilities provided to the application developer.

3.2.1 Read Operations
Espresso provides document lookup via keys or secondary

indexes. There are three ways to lookup via keys: 1) spec-
ify a complete primary key and a single document gets re-
turned, 2) specify a list of resource keys sharing the same
leading key, and a list of documents get returned, and 3)
specify a projection of fields of a document, and only the
required fields are returned. Local secondary index queries
are performed by providing the partition key that identifies
the document group, the table for which the query needs to
be run and the attributes or search terms in the query.

3.2.2 Write Operations
Espresso supports insertion or full update of a single doc-

ument via a complete key. Advanced operations that are
supported include 1) partial update to a document given
a complete key, 2) auto-increment of a partial key, and 3)
transactional update to document groups (across multiple
tables but sharing the same partitioning key). Examples
of partial updates include increment/decrement operations
on “number” fields, a typical requirement for implementing
counters. Deletes are supported on the full keys as well as
partial keys.

3.2.3 Conditionals
Conditionals are supported on both Reads and Writes and

currently support simple predicates on time-last-modified
and etag (CRC of the document contents). These are typi-
cally used to implement the equivalent of compare-and-swap
style operations. In practice, since the rich API allows fairly
complex server-side processing, we rarely see conditional
writes.



3.2.4 Multi Operations
All read and write operations have their “Multi” coun-

terparts to support multiple operations grouped into one
transaction. These are typically used for batch operations.

3.2.5 Change Stream Listener
Espresso also provides a Change Stream Listener API

through Databus. This allows an external observer to ob-
serve all mutations happening on the database while preserv-
ing the commit-order of the mutations within a document
group. The API allows an observer to consume the stream,
while noticing transaction boundaries to maintain consis-
tency at all times if required. Each individual change record
contains the type of the change (Insert, Update, Delete),
the key of the document modified, the pre and post-image
(if applicable) and the SCN of the change. This allows very
easy integration with nearline processors that are perform-
ing streaming computations and other kinds of processing
on the change stream.

3.3 Bulk Load and Export
An important part of Espresso’s place in the data ecosys-

tem is its seamless integration with the end-to-end data flow
cycle. To that end, we support efficient ingestion of large
amounts of data from offline environments like Hadoop into
Espresso. Hadoop jobs emit to a specialized output format
that writes out the primary data as well as the index up-
dates (if applicable) and applies the partitioning function
to write out files that align with the online partitions. As
a final step, the output format notifies the online Espresso
cluster about the new data and its location by interacting
with Helix. Each storage node then pulls in the changes
that are related to the partitions that it is hosting and ap-
plies them locally using efficient bulk-insert paths. The bulk
ingest operation supports incremental semantics and can go
on while reads and writes are happening to the online data
set. Storage nodes indicate completion after processing their
individual tasks allowing an external observer to monitor the
progress of the bulk import very easily.

The inverse operation to bulk data ingest is data export.
This is extremely important to support ETL and other kinds
of large offline data analysis use-cases. We use Databus to
provide the real-time stream of updates which we persist
in HDFS. Periodic jobs additionally compact these incre-
mental updates to provide snapshots for downstream con-
sumption. This allows offline processors to either process
the change activity or the entire data set depending on their
needs. There are a host of interesting sub-problems here
like metadata management and evolution, inexact alignment
between wall-clock time and the logical clock timeline pro-
vided by Espresso’s commit log, and ensuring end-to-end
data integrity and consistency. For brevity, we skip these
discussions in this paper.

4. SYSTEM ARCHITECTURE

4.1 System Overview
The Espresso system consists of four major components:

clients and routers, storage nodes, databus relays and clus-
ter managers. The overall system architecture is depicted
in Figure 1, where the data flow is depicted in solid arrows,
The data replication flow is depicted in double solid arrows,
and the cluster state control flow is shown in dotted line.

Espresso clients generate reads and writes to routers, and
routers pass the requests to storage nodes who own the data.
Storage node process the request through the primary key
or the secondary index lookup. Changes to the base data
is replicated from one storage node to databus relays, and
consumed by another storage node which maintains a con-
sistent replica of the primary source. Cluster manager, aka
Helix, monitors and manages the state of the entire cluster,
including storage nodes, and databus relays. Routers and
storage nodes are also spectators of the states the cluster,
so they react to cluster state changes accordingly.

Router
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Router

Storage Node

Base 
Data

Index

......

Databus Relay
Databus Relay

Databus Relay
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Figure 1: Espresso Architecture in a Single Colo

4.2 System Components
Client and Router. An application sends a request to

an Espresso endpoint by sending an HTTP request to a
router, which inspects the URI, forwards the request to the
appropriate storage node(s), and assembles a response. The
routing logic uses the partitioning method for the database
as specified in the database schema and applies the appro-
priate partitioning function, e.g. a hash function, to the
partition key of the URI to determine the partition. Then it
uses the routing table that maps each partition to the mas-
ter storage node, and sends the request to that node. For a
request without a partitioning key, such as an index search
query on the whole data set, the router queries all storage
nodes, and sends the merged result set back to the client.

Cluster Manager. Espresso’s cluster manager uses Apache
Helix [16]. Given a cluster state model and system con-
straints as input, it computes an ideal state of resource dis-
tribution, monitors the cluster health, and redistributes re-
sources upon node failure. Helix throttles cluster transitions
during resource redistribution, and ensures the cluster is al-
ways in a valid state, whether in steady-state mode or while
executing transitions.

Each Espresso database is horizontally sharded into a num-
ber of partitions as specified in the database schema, with
each partition having a configurable number of replicas. For
each partition, one replica is designated as master and the
rest as slaves. Helix assigns partitions to storage nodes in



accordance with these constraints: 1) only one master per
partition (for consistency), 2) master and slave partitions are
assigned evenly across all storage nodes (to balance load),
3) no two replicas of the same partition may be located on
the same node or rack (for fault-tolerance), and 4) mini-
mize/throttle partition migration during cluster expansion
(to control impact on the serving nodes).

Helix [16] is a generic cluster management system, and
an Apache incubator project. Please refer to the Helix pa-
per [16] for an in-depth description.

Storage Node. The storage node is the building block
for horizontal scale. Data is partitioned and stored on stor-
age nodes, which maintain base data and corresponding local
secondary indexes. Storage nodes also provide local transac-
tion support across entity groups with a common root key.
To achieve read-after-write consistency, storage nodes apply
updates transactionally to base tables and their secondary
indexes.

Storage nodes maintain replicas using a change log stream
provided by the replication tier. Committed changes to base
data are stored locally in a transaction log that is pulled
into the replication tier. Slave partitions are updated by
consuming change logs from the replication tier, and apply-
ing them transactionally to both the base data and the local
secondary index.

In addition to serving requests from the client and from
the replication tier, a storage node also runs utility tasks
periodically, including consistency checking between master
and slave partitions, and backups. To minimize performance
impact on read/write requests, utility tasks are throttled to
control resource consumption.

Databus. For replication, Espresso uses Databus [14],
LinkedIn’s change data capture pipeline to ship transac-
tion events in commit order and provide Timeline Con-
sistency. Timeline Consistency is a form of eventual con-
sistency, which guarantees that events are applied in the
same order on all replicas for each partition. This feature
provides the basis for implementing failover and rebalanc-
ing. Changes from master partitions are captured, trans-
ferred and applied to the replicas in the following manner.
First, on a storage node, all changes are tagged with a local
transaction sequence number and logged. Second, the log is
shipped to Databus relay nodes. Third, a different storage
node pulls changes from Databus relay and applies them to
its slave partitions. All these steps follow the transaction
commit order so that timeline consistency is guaranteed.

Databus achieves very low replication latency, and high
throughput. It can easily scale to thousands of consumers.
It provides data filtering, allowing a consumer to subscribe
to changes from a specified subset of tables in a source
database. A databus consumer can also selectively choose
events of interest at various granularities. For example, a
consumer can subscribe to a list of partitions or a set of
tables. The same Databus instances used for replication
provide an external change capture pipeline for downstream
consumers within the data ecosystem, such as Hadoop clus-
ters, the social graph engine, people search service, etc.

5. IMPLEMENTATION

5.1 Secondary Index
In contrast to a simple key-value data model, the Docu-

ment Groups data model allows us to support certain forms

of secondary indexing very efficiently. One simple use-case
for this is selecting a set of documents from a document
group based on matching certain predicates on the fields of
the documents. In a key-value model, the application de-
veloper either has to fetch out all the rows and perform the
filtering in application code, or has to maintain the primary
relationship and reverse-mappings for every secondary key
that could be used to access this document. The first ap-
proach doesn’t scale for very large document groups, the
second creates the potential for divergence between the pri-
mary and reverse-mappings due to the combination of dual-
writes in the face of different failure scenarios. Addition-
ally, if the query involves consulting several such secondary
key-value pairs, the read performance of the system gets
impacted. Thus even though individual key-value lookups
might be very cheap, the overall cost of a secondary-key
based lookup might be quite high. Secondary Indexes on
Document Groups are what we call local secondary indexes.
This is because Espresso stores all entities that belong in the
same entity group on a single node. Secondary Indexes on
Independent-Entity relationships are what we call global sec-
ondary indexes. These are typically implemented as derived
tables that are guaranteed to be updated asynchronously by
processing the change stream emanating from the primary
entity database. In this section, we focus on Espresso’s im-
plementation of local secondary indexes.

The key functional requirements were:

1. Real-Time indexes: Almost all our use-cases with hi-
erarchical data models require read your own writes
consistency regardless of whether the access is by pri-
mary key or by query on the collection.

2. Ease of Schema Evolution: Given the product agility,
we see a lot of changes in the schema of these doc-
uments. Therefore being able to add new fields and
add indexing requirements on them with zero down-
time and operational ease was a big requirement.

3. Query flexibility: Another consequence of product agility
is that queries evolve quickly over time. The tra-
ditional wisdom of specifying your queries up front,
spending time with the DBA tuning the query to use
the appropriate indexed paths is no longer viable in
this fast-paced ecosystem.

4. Text search: Apart from queries on attributes, it is
fairly common to allow the user to perform free-form
text search on the document group.

We require users to explicitly indicate indexing require-
ments on the fields by annotating them in the Document
schema. Schema evolution rules allow users to add new fields
and declare them indexed, or index existing fields.

Our first attempt used Apache LuceneTM , which is a high-
performance, full-featured text search engine library written
entirely in Java. This was primarily motivated by our re-
quirements for text search as well as our in-house expertise
with Lucene. Internally, Lucene uses inverted indexes, which
fulfill requirements 2, 3, and 4. However, Lucene has a few
drawbacks:

• It was not initially designed for real-time indexing re-
quirements.

• The entire index needs to be memory-resident to sup-
port low latency query response times.

• Updates to the document require deleting the old doc-
ument and re-indexing the new one. This is because



Lucene is log-structured and any files it creates become
immutable.

We applied several techniques to address the first two
drawbacks and bring latencies and memory footprint down
to acceptable levels. The first idea was to organize the in-
dex granularity be per collection key rather than per par-
tition. This creates a lot of small indexes but allows our
memory footprint to be bounded by the working set. We
then store these millions of small indexes in a MySQL table
to ameliorate the impact of so many small files and achieve
transactionality of the index with the primary store.

In our second attempt we built an indexing solution that
we call the Prefix Index. We keep the fundamental building
block the same: an inverted index. However, we prefix each
term in the index with the collection key for the documents.
This blows up the number of document lists in the inverted
index, but at query time, allows us to only look at the docu-
ment lists for the collection that is being queried. The terms
are stored on a B+-tree structure thus providing locality of
access for queries on the same collection. This is equivalent
to having a separate inverted index per collection in terms
of memory footprint and working set behavior without the
overhead of opening and closing indexes all the time. In
addition, we support updates natively to the index because
our lists are not immutable. Only the lists affected by the
update are touched during the update operation. Similar
to the Lucene implementation, we store the Prefix Index
lists in MySQL (InnoDB) to additionally get the benefit of
transactionality with the primary store. During query pro-
cessing, the lists that match the query terms are consulted,
bitmap indexes are constructed on the fly to speed up the
intersecting of these lists and the results are then looked up
from the primary store to return back to the client.

5.2 Partitions and replicas
Espresso partitions data to serve two purposes, 1) load

balancing during request processing time, and 2) efficient
and predictable cluster expansion. Since Espresso serves
live online user traffic, maintaining the SLA during clus-
ter expansion is mission-critical. Cluster expansion through
partition splitting tends to create significant load on the ex-
isting serving nodes. Instead, we partition the data into a
large number of partitions to begin with and only migrate
partitions to new nodes when cluster expansion is needed.
Overpartitioning also keeps the partition size small, which
has a number of advantages. Ongoing maintenance opera-
tions such as backup/restore can be done in less time us-
ing parallelism, when partitions are smaller. We have made
significant optimizations in our cluster manager (Helix) to
manage the overhead resulting from a large number of par-
titions.

Each partition is mastered at one node and replicated on
n nodes in a traditional master-slave model. We ensure that
slave partitions do not collocate on the same node or rack.
Partitions and replicas are completely invisible to external
clients and downstream consumers.

5.3 Internal Clock and the Timeline
As described earlier, Espresso partitions its data set using

a partitioning function that can be customized per database.
Each database partition operates as an independent commit
log. Each commit log acts as a timeline of data change
events that occured on that partition forming an internal
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clock. These timelines are preserved in Databus relays,
all Espresso replicas, and provided to all down-stream con-
sumers. A timeline consists of an ordered sets of changes
in a partition. Each change set is annotated with a mono-
tonically increasing system change number (SCN). SCN has
two parts, generation number and sequence number. Events
committed within one transaction all share the same SCN.
For each new transaction, the sequence number increments
by one. For each mastership transfer, the generation number
increments by one. Figure 3 depicts a timeline of a partition
among all replicas N1, N2, and N3. At T0, N2 is the master.
It sends events starting from SCN (1,1) to other replicas. At
T1, N2 fails. N1 becomes the new master, and starts a new
generation of SCN (2,1). At T2, N2 comes back and receives
events generated by N1. At T3, N1 fails, N3 becomes the
new master, and generates events from SCN (3,1). At T4,
N1 comes back, and receives all missing events. The timeline
from all replicas of a given partition is the same.

5.4 Replication and Consistency
Several large web companies [3, 4, 7] have used sharded

MySQL with replicas to build a scalable primary fault-tolerant
data store. There are two flavors of sharded MySQL archi-
tectures, the first involves one logical partition per MySQL
instance and the second involves multiple logical partitions
per MySQL instance. The first approach requires re-sharding
during cluster expansion which is a very painful process as
described by the F1 paper [18]. Applying logical sharding
on top of MySQL allows the data to be located indepen-
dently on disk, which simplifies partition-level backups, re-



stores etc. However, there are still several issues due to
MySQL replication that we discovered, 1) MySQL uses log
shipping to maintain consistency among replicas, but its log
is not partitioned although data is sharded; 2) MySQL does
not support replication of partial logs. Because of these lim-
itations, vanilla MySQL replication cannot achieve the fol-
lowing goals, a) load balancing: mixing master and slave
partitions within one MySQL instance so loads are evenly
spread across instances, and 2) online cluster expansion:
moving a subset of partitions from one instance to a new
instance without quiescing the cluster. We designed our
replication layer to address these problems, while still using
MySQL replication stack as a building block.

Espresso replication flow is shown in Figure 2. First,
we enhanced MySQL’s binary log by adding a new field to
record the partition-specific commit SCN. Using the MySQL
replication protocol, the binary log is pulled into the Databus
relays. Between the MySQL master and the relays, we
can use either semi-synchronous or asynchronous replica-
tion. These two options provide a tradeoff between write
latency and durability. When semi-sync replication is used,
the commit blocks until the change is acknowledged by at
least one relay. When a slave is promoted to master, it first
drains all the events from Databus, thus guaranteeing that
the slave applies all changes that were committed on the
master.

To ensure consistency among replicas, we developed a con-
sistency checker. It calculates the checksum of certain num-
ber of rows of a master partition, replicates the checksum to
storage nodes running slave partitions. A storage node cal-
culates checksum against the same set of rows, and compares
against the master checksum. On detection of errors, we ap-
ply recovery mechanisms such as restoring a slave partition
from a backup of the master partition, to fix the inconsistent
slaves.

5.5 Fault-tolerance
Espresso is designed to be resilient to hardware or software

failures. Each system component in Espresso, as described
in Section 4, is fault-tolerant. We elaborate failure handling
for each component below.

As we mentioned before, data is stored in storage nodes
in units of partitions. For each partition has replicas, one as
a master, and the rest as slaves. When a storage node fails,
all the master partitions on that node have to be failed over,
meaning for each master partition on the failed node, a slave
partition on a healthy node is selected to take over. The fail-
over process is the following. Helix first calculate a new set
of master partitions from existing slaves, so that the load is
evenly spread across the remaining storage nodes. Assume a
selected slave partition is at SCN (g, s). The slave partition
drains any outstanding change events from databus and then
transitions into a master partition. The new master starts
a new generation of SCN (g+1, 1).

To detect storage node failures, Helix uses two approaches
in combination: 1) Use Zookeeper heartbeat for hard failure.
If a node fails to send heartbeat for configurable amount of
time, it is treated as failure; 2) Monitor performance metrics
reported by router or storage nodes. When a router or a
storage node starts seeing problems, such as a large volume
of very slow queries – an indication of a unhealthy node, it
reports to Helix and Helix treats this as failure and initiates
mastership transfer.

During the fail-over time, there is transient unavailability
for the partitions mastered on the failed node. To minimize
transition latency, Helix always promotes a slave partition
which is closest in the timeline to the failed master to become
the new master. Router can optionally enable slave reads to
eliminate read unavailability due to failures. After slave to
master transition finishes for a partition, Helix changes the
routing table stored on ZooKeeper, so that the router can
direct the requests accordingly.

Databus is also fault-tolerant. Each databus relay in-
stance has n replicas (we use 2 or 3). For every storage node,
one relay is designated to be the leader while n-1 are desig-
nated to be followers. The leader relay connects to the data
source to pull the change stream while the follower relays
pull the change stream from the leader. The clients, includ-
ing both espresso storage nodes and external consumers, can
connect to any of the relays, either leader or follower. If the
leader relay fails, one of the surviving followers is elected to
be the new leader. The new leader connects to the storage
node and continues pulling the change stream from the last
sequence number it has. The followers disconnect from the
failed leader and connect to the new leader. This deploy-
ment drastically reduces the load on the data source server
but when the leader fails, there is a small delay while a new
leader is elected. During this window, the latest changes in
the change stream from a storage node are not available to
another storage node, consuming these changes.

Helix is managed by itself with several replicas using Leader-
Standby state model. Each helix instance is stateless. If
current leader fails, a standby instance will be elected to be
a leader, and all helix clients, including storage nodes, relays
and routers, will connect to the new leader.

5.6 Cluster Expansion
Espresso is elastic: new storage nodes are added as the

data size or the request rate approaches the capacity limit
of a cluster. Espresso supports online cluster expansion,
which is a business requirement for being an online data
store. When nodes are added we migrate partitions from ex-
isting nodes to new ones without pausing live traffic. When
expanding an Espresso cluster, certain master and slave par-
titions are selected to migrate to the new nodes. Helix will
calculate the smallest set of partitions to migrate to mini-
mize data movement and cluster expansion time. This way
the cluster expansion time is proportional to the percentage
of nodes added. In the future, we plan to enhance Helix
to take machine resource capacity into account with hetero-
geneous machines accumulated over years, when calculating
the new partition assignment. For each partition to be mi-
grated, we first bootstrap this partition from the most recent
consistent snapshot taken from the master partition. These
partitions can then become slaves. These slaves consume
changes from databus relay to catch up from current mas-
ters.

5.7 Multi Datacenter
At present, LinkedIn serves the majority of its traffic from

a single master data center. A warm standby is located in
a geographically remote location to assume responsibility in
the event of a disaster. The Espresso clusters in the disaster
recovery (DR) data center are kept up to date using the
change log stream from the primary clusters. These DR
clusters can serve read traffic when there are no freshness



requirements but do not serve any write traffic. In the event
of a switch-over to the DR site, operators must manually set
the DR cluster to be a primary and enable replication to the
old primary.

6. ESPRESSO IN PRODUCTION
Espresso has been deployed in production at LinkedIn

since June 2012. In this section, we talk about a few use-
cases that are running on Espresso today.

6.1 Company Pages
LinkedIn Company Pages allow companies to create a

presence on the LinkedIn network to highlight their com-
pany, promote its products and services, engage with follow-
ers and share career opportunities. Over 2.6 million compa-
nies have created LinkedIn Company Pages. A company’s
profile, products and services and recommendations of those
products and services are stored in the BizProfile database.

Company Pages is an example of a normalized relational
model migrated to Espresso. Each Company Page provides
profile information about the company. A Company Profile
page may list one or more of the company’s products and
services. Finally members may provide recommendations
for products and services. This hierarchy is implemented as
three separate tables with products nested under companies,
and recommendations nested under products.

This use case exhibits a typical read-heavy access pattern
with an 1000:1 ratio of reads to writes.

6.2 MailboxDB
LinkedIn provides InMail, a mechanism for members to

communicate with one another. A member’s inbox contains
messages sent by other members, as well as invitations to
connect. The MailboxDB is currently migrating from an
application-sharded RDBMS implementation to Espresso.
This use case illustrates several features of Espresso includ-
ing collection resources, transactional updates, partial up-
date and local secondary indexing.

The MailboxDB contains two tables. The Message table
contains a collection of messages for each mailbox. Each
document in the Message table contains subject and body
of the message along with message metadata such as sender,
contining folder, read/unread status, etc.

The most frequent request to the InMail service is to get a
summary of the inbox content that includes two counts: the
number of unread messages and the number of pending in-
vites. Particularly for large mailboxes, the cost of computing
these counts on each summary request, even by consulting
an index, would be prohibitive. Instead, the application ac-
tively maintains a separate summary document per mailbox.
These summary documents are stored in the Mailbox table.

To prevent the counters in the summary document from
getting out of sync with the data, the update of the Message
table and the Mailbox table need to be transactional.

The MailboxDB has an atypically high write ratio. In
addition to new mail delivery, each time a member reads an
InMail message a write is generated to mark the message as
no longer unread. As a result, we see approximately a 3:1
read to write ratio for the MailboxDB.

6.3 USCP
The Unified Social Content Platform (USCP) is a shared

platform that aggregates social activity across LinkedIn. By

integrating with USCP, a LinkedIn service can annotate
its data with social gestures including likes, comments and
shares. Services that utilize USCP include LinkedIn Today,
the Network Update Stream on a member’s home page and
our mobile applications for tablets and phones.

The typical USCP access pattern is as as follows. A ser-
vice selects the set of domain-specific data items to display
to a user, then queries the USCP platform for any social ges-
tures that have accrued to the selected items. The content
is annotated with the social gestures, if any before it is dis-
played. The UI includes calls to action to allow the viewer
to like, comment or share. For example, a LinkedIn Today
article summary is displayed with a count of the article’s
Likes and Comments along with the most recent of each.

The USCP workload has a very high Read:Write ratio,
and read requests are predominantly multi-GET requests.

7. EXPERIMENTAL EVALUATION
We ran a comprehensive set of experiments to evaluate

various aspects of our system, including availability under
failure cases, elasticity with cluster expansion, and perfor-
mance under different workloads and failures.

7.1 Test Setup
Type CPU RAM Storage

S1 2x6-core Xeon@2.67GHz 48GB 1.4TB SSD
1TB SAS

S2 2x6-core Xeon@2.67GHz 24GB 1TB SATA

Component Servers Machine Type

Storage Node 12 S1
Databus Relay 3 S1
Router 3 S2
Helix 3 S2
ZooKeeper 3 S1

Table 1: Machine Configuration and Cluster Setup

We set up a testing cluster in a production fabric as shown
in Table 1. We used the production releases of Espresso Stor-
age Node, Databus Relay, Helix, and Router. We used the
workloads extracted from USCP and MailboxDB use cases,
and enhanced the workloads to evaluate system performance
from various aspects. The cluster is set up in the following
way. Data on storage nodes is configured to have 3 repli-
cas, one master and two slaves. Databus relay is configured
to have 2 replicas, one leader and one stand-by. Helix is
configured to have one leader node and two stand-by nodes.
Finally, Zookeeper uses 3 nodes with 2-node quorum setup.

7.2 Availability
We ran a set of experiments to measure time to fail-over

when a storage node fails. Since our basic fault-tolerance
unit is a partition, there is per-partition management over-
head. We have varied the total number of partitions, and
observed how it plays a role in availability.

First, we increased the total number of partitions from
64 to 2048, and measured the fail-over latency when a sin-
gle node fails. We compared two configurations of state-
transitions, one with singular-commit and one with group-
commit. Singular-commit invokes state transition message
for each partition, and group-commit invokes state tran-
sition for a group of partitions on a storage node. With
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Figure 4: Fail-over Latency

group-commit the amount of disk I/O on ZooKeeper is sig-
nificantly reduced. The results are shown in Figure 7.2. Fail-
over latency with group commit is significantly smaller com-
pared with singular commit when the number of partitions
increases. However, the overall fail-over latency increases
too. So practically, we cannot use a very large number of
partitions. We found the knee of the curve to be between
512 and 1024 partitions, and is the range recommended for
production.
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Figure 5: Espresso vs MySQL Fail-over Comparison

Second, we compared sharded MySQL with Espresso. We
used the same partitioning strategy between Sharded MySQL
and Espresso. However, the partition allocation is different
between these two systems. We changed the Helix partition
allocation and fail-over logic to make Espresso behave like
Sharded MySQL. For Sharded MySQL, master partitions
and slave partitions cannot be mixed on a single node (or
more precisely a single MySQL instance). Partitions on a
node are all master partitions or all slave partitions. When
a master node fails, in Sharded MySQL, a slave node needs
to completely take over all partitions, then become a master
node. The fail-over latency for 64, 512, and 2048 partitions
is shown in Figure 5. Espresso always outperforms Sharded
MySQL, the higher the number of partitions, the bigger the
gap. The reason is during fail-over, Helix evenly distributes
failed partitions to the rest of the cluster, so each running
node does less work and the degree of fail-over parallelism is
higher. Note that we also plot the fail-over progress in Fig-

ure 5. For Espresso, it is making gradual progress to fail-over
partition by partition to healthy storage nodes. For Sharded
MySQL, it is all or nothing, so writes to the failed partitions
is blocked until all failed partitions are taken over by a slave
node.

7.3 Elasticity
As Espresso supports larger data sizes and request rates,

on-line cluster expansion without down-time becomes a key
requirement. It also needs to be done in a timely fashion
when expansion is required. When a cluster expands, parti-
tions will be moved from existing nodes to new nodes. The
ideal amount of data movement should be proportional to
the degree of cluster expansion. We varied the degree of clus-
ter expansion from a 6-node cluster and showed the results
in Figure 6. First, we executed the cluster expansion seri-
ally, one partition at a time. The cluster expansion latency
matches very well with the expected % of data moved, which
is derived from the expected % of cluster expanded. Sec-
ond, we expanded the cluster in parallel on multiple storage
nodes simultaneously. With more nodes added, the higher
the degree of parallelism, the faster the expansion.
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Figure 6: Cluster Expansion Performance

7.4 Performance
In this section, we present performance results with work-

loads representing MailBoxDB use cases. All tests are run-
ning against a single storage node.

The first workload we use is from the MailBoxDB use case.
We ran tests with 2 data sets. The data sets differs in the
size of the mailboxes. Set A is for small mailbox test, each
mailbox having 100 messages and a total of 400,000 mail-
boxes. Set B is for large mailbox test, each mailbox having
50K messages and a total of 800 mailboxes. The Message
schema has 39 fields, 4 of which are indexed. The workload
simulates 1% users having concurrent sessions, each session
lasting 10 requests. Users are selected uniformly randomly.
In this set of tests, we compare two index implementations,
namely Lucene and Prefix-index as described in Section 5.1.
In each test, we varied the read write ratio, and collect la-
tency stats. For small mailbox, we run 2000 requests per
second, and for large mailbox, we run 250 requests per sec-
ond. The results are shown below in Figure 7(a) and 7(b).

For small mailboxes, Prefix index outperforms Lucene by
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Figure 7: Index Performance Comparison

2x. The reason is for each PUT, Lucene invokes much
more I/O than Prefix index because the Lucene index is
immutable, so new index files are generated, while Prefix
index does in-place update. The Prefix index is more sta-
ble than Lucene. Its mean and 99% latency stays constant
when the workload mix changes, while Lucene performance
degrades with more writes. This is because for Prefix index,
the amount of I/O is fixed for PUT and GET regardless of
the mix. For Lucene, more PUT causes index fragmenta-
tion, and hence degrade GET performance. Lucene also has
compaction overhead for garbage collection, which makes
the 99% latency much higher.

For large mailboxes, Prefix index outperforms Lucene by
1.8 to 2x. Lucene mean latency is more stable when work-
load mix changes with large mailboxes compared with small
mailboxes, because for large mailboxes, GET and PUT la-
tency is quite similar. The reason is with large mailboxes,
there is a big index segment per mailbox with a few small
delta segments. So both GET and PUT latency is domi-
nated by access to the big segment. The Prefix index mean
latency is better when there is more PUTs, because GETs
are more expansive than PUTs, as they needs to read in all
inverted list rows. However, Lucene has better 99% latency
than Prefix index. This is because Prefix index starts a
transaction, fetches the inverted index rows, modifies them,
then write them back. Because the mailboxes are big, so
the PUT cost is higher, and hence the transaction spans
longer period. With concurrent users, transactions can col-
lide on locking the same rows. In real COMM application,
the chance that the same user update his/her own mailbox
is very rare. So in practice, this problem is not very cru-
cial. However, we still plan to mitigate this problem by the
following improvement: we push down the inverted index
mutation to MySQL, to avoid the overhead of parsing and
client/server I/O, so the transaction time is much shorter,
and hence the possibility of collision is much smaller.

8. LESSONS LEARNED
The deployment and testing experience with Espresso has

provided us several valuable lessons in the area of high-
availability and performance tuning in various parts of the
system stack.

Availability: As we have described in this paper, Espresso
uses master-slave architecture where the master handles writes
(and fresh reads). When there are node failures, the cluster
manager transfers the mastership to surviving replicas after
a configured timeout. To avoid flapping where mastership is
repeatedly transferred due to transient failures, this is set to
a few seconds. During this period, certain partitions become
briefly unavailable. We have allowed slave reads to address
read unavailability but the partitions remain unavailable for
writes till a new master is chosen. This is significant outage
for some applications and we are working on reducing this
downtime.

Storage Devices: One of the big challenge of building
a data platform at Linkedin is the large variety of use-cases
and their access patterns. To enable multi-tenancy while
guaranteeing application SLAs required a lot of system tun-
ing. The use of SSDs and their massive IOPs capacity which
reduce the dependency on buffer caches and the locality of
access, has been very effective. In fact, we found that SSDs
challenged a lot of the conventional wisdom including cost-
effectiveness. For example, the mailbox usecase has a large
data footprint and is storage bound. But to satisfy the re-
quest pattern of this usecase, especially for secondary in-
dexes, we found that it was in fact cheaper to use SSDs as
SAS disks would have cost much more for the same IOPs.

Java Tuning: Espresso has been developed in Java and
while this has allowed for accelerated development, JVM
tuning has been a challenge especially with mixed work-
loads. Use of SSDs in fact exacerbates this problem as SSDs
allow the data to be read at a very high rate, draining free
memory and causing Linux to swap out memory pages of
the JVM heap. We had to invest significant time in JVM
tuning to address this issue. Using InnoDB as the storage
engine has also helped since the bulk of the data is held in
InnoDB buffer pool which is outside the JVM heap. During
performance tuning, we also found that the complex inter-
action between different components make it rather difficult
to analyze performance bottlenecks using off the shelf tools.
To address this, we ended up building a performance tool-
ing framework that allows developers to automate runs with
their code and visualize the impact of their changes on per-
formance.



Cluster Management: Apache Helix (the generic cluster-
manager used by Espresso), uses Zookeeper as the coordina-
tion service to store cluster metadata. Although Zookeeper
supports a high throughput using sequential log writes, we
found the latencies to be high even with dedicated disk
drives. This is particularly significant during fail-over, espe-
cially when the number of affected partitions is very high.
We have made a number of improvements in Helix like group
commit that improve the latency of zookeeper operations,
which has allowed us to scale to tens of thousands of parti-
tions in a single cluster. We plan further improvements in
this area that will allow us to scale even more.

9. FUTURE WORK
Cross-entity transactions. Espresso’s hierarchical data

model allows related entities in a collection to be updated
consistently. This satisfied the requirements of a large num-
ber of usecases, which model entity-child relationships. In
the few cases that model entity-entity edge relationship and
require both the edges to be modified atomically, we cur-
rently do not provide this support and they risk seeing in-
consistent data at times. We plan to add cross entity trans-
action support in the future to address this requirement.

Platform extensibility. Espresso was designed to be a
generic platform for building distributed data systems. So
far, we have focused on building a OLTP system as described
in the paper. MySQL/InnoDB have proven to be very re-
liable and reusing MySQLs capabilities of binary log and
replication have allowed for a very aggressive development
schedule. There are many other usecases we plan to ad-
dress with the platform. We have some ongoing work to use
Espresso to build an OLAP system using a columnar stor-
age engine. We also plan to use a log-structured engine to
address usecases that have very high write rates.

Multi-master deployment. We are currently working
on extending Espresso to be active in multiple data centers
so that data is both readable and writable in multiple data
centers. The latency between LinkedIn data centers is typi-
cally significantly greater than the latency for a local write.
Thus coordination across data centers for reads or writes it
not acceptable. In the multi-DC deployment, we plan to
relax cross-colo consistency and service reads and writes lo-
cally in the requesting data center to avoid degrading the
user experience.

Most individual user-generated data at LinkedIn is only
writable by a single, logged in, member. To provide read-
your-writes consistency, we need to avoid accepting a write
from a member in one data center then servicing a subse-
quent read from the member from a different data center
before the write has propagated. In the event the same row
was updated in two data centers within the propagation la-
tency, the applier of remotely originated writes applies a
Last Writer Wins conflict resolution strategy to guarantee
that the row resolves to the same value in all regions.

To minimize the likelihood of write conflicts we are devel-
oping inter-data center sticky routing by member id. When
a member first connects to LinkedIn, a DNS server will select
a data center based on geoproximity and current network
conditions. Upon login, the member will be issued a cookie
indicating the data center that accepted the login. All sub-
sequent access by the same member, within a TTL, will be
serviced from the same region, redirecting if necessary.

10. RELATED WORK
Espresso provides a document oriented hierarchical data

model that’s similar to that provided by Megastore [9] and
Spanner [13]. Unlike MegaStore and Spanner, it does not
provide support for global distributed transactions but the
transaction support within an Entity group offered by Espresso
is richer than most other distributed data systems such as
MongoDB [5], HBase [1] and PNUTS [12]. Among the well-
known NoSQL systems, MongoDB is the only one that offers
rich secondary indexing capability at par with Espresso, al-
though it lags Espresso in terms of RAM:disk utilization.
With the exception of MongoDB, other NoSQL systems do
not offer rich secondary indexing capability that Espresso
offers.

Like BigTable [11] and HBase [1], Espresso chooses CA
over AP in contrast to most Dynamo style systems such as
Riak and Voldemort. However, HBase and BigTable fol-
low a shared-storage paradigm by using a distributed repli-
cated file system for storing data blocks. Espresso uses local
shared nothing storage and log shipping between masters
and slaves with automatic failover, similar to MongoDB.
This guarantees that queries are always served out of local
storage and delivers better latency on write operations.

The multi-DC operation of Espresso differs significantly
from other systems. Eventually consistent systems like Volde-
mort [6] and Cassandra [17] implement quorums that span
geographic regions. MegaStore and Spanner implement syn-
chronous replica maintenance across data centers using Paxos.
PNUTS implement record level mastership and allows writes
only on the geographic master. Espresso relaxes consistency
across data centers and allows concurrent writes to the same
data in multiple data centers relying on the application lay-
ers to minimize write conflicts. It then employs conflict de-
tection and resolution schemes within the system to ensure
that data in different data centers eventually converges.

11. CONCLUSION
We have described Espresso, a distributed document-oriented

database that emerged out of our need to build a primary
source-of-truth data store for LinkedIn. Espresso is timeline
consistent, provides rich operations on documents includ-
ing transactions over related documents, secondary indexed
access and supports seamless integration with nearline and
offline environments. Espresso has been in production since
June 2012 serving several key use-cases.

We are in the process of implementing several additional
Espresso features such as support for global secondary in-
dexes, accepting writes in multiple data centers with multi-
ple master replicas and supporting more complex data struc-
tures such as lists and sets natively. As we scale our applica-
tion footprint, we’re also starting to work on multi-tenancy
challenges to simplify our capacity planning and hardware
footprint story.
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