Quantum walk algorithm for element distinctness

Andris Ambainis

Abstract

We use quantum walks to construct a new quantum algorithreléonent distinctness and its gener-
alization. For element distinctness (the problem of findimg equal items amongy given items), we
get anO(N?/3) query quantum algorithm. This improves the previgysv3/*) quantum algorithm of
Buhrman et al.[[T4] and matches the lower boundby [1]. We gige anO(N*/(*+1)) query quantum
algorithm for the generalization of element distinctness/hich we have to find: equal items among
N items.

1 Introduction

Element distinctness is the following problem.

Element Distinctness.Given numbers:y, ..., zy € [M], are they all distinct?

It has been extensively studied both in classical and quacmputing. Classically, the best way
solve element distinctness is by sorting which requi2éd’) queries. In quantum setting, Buhrman et
[14] have constructed a quantum algorithm that u3é8’ 3/ 4) queries. Aaronson and Shi [1] have sho
that any quantum algorithm requires at le@éiV/3) quantum queries.

In this paper, we give a new quantum algorithm that solvemete distinctness with)(N2/3) queries
tox1,...,zn. This matches the lower bound of [1, 5].

Our algorithm uses a combination of several ideas: quantarch on graph$]2] and quantum wal
[30]. While each of those ideas has been used before, thentresmbination is new.

We first reduce element distinctness to searching a certaiphgwith verticesS C {1,...,N} as
vertices. The goal of the search is to find a marked vertexh Beamining the current vertex and movil
to a neighboring vertex cost one time step. (This contragits ttve usual quantum searc¢h [26], where o
examining the current vertex costs one time step.)

We then search this graph by quantum random walk. We stadmifarm superposition over all vertice
of a graph and perform a quantum random walk with one tramsitile for unmarked vertices of the graj
and another transition rule for marked vertices of the grdfte result is that the amplitude gathers in
marked vertices and, aft€r(N 2/ 3) steps, the probability of measuring the marked state is staoh
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We also give several extensions of our algorithm. If we havéirtd whetherxy, ..., zx containk
numbers that are equal;, = ... = x;,, we get a quantum algorithm wit(N*/(*+1)) queries for any
constant k.

If the quantum algorithm is restricted to storingumbersy < N2/3, then we have an algorithm whic
solves element distinctness with N/+/r) queries which is quadratically better than the classiv@v?/r)
query algorithm. Previously, such quantum algorithm wasamonly forr < /N [14]. For the problem
of finding £ equal numbers, we get an algorithm that u@é%) queries and stores numbers, for
r < NE=1/k,

For the analysis of our algorithm, we develop a generabpatif Grover’s algorithm (Lemmid 3) whic
might be of independent interest.

1.1 Related work

Classical element distinctness Element distinctness has been extensively studied cilysidt can be
solved withO (V') queries and)(N log N) time by querying all the elements and sorting them. Then,
two equal elements must be next one to another in the sortlest and can be found by going through t
sorted list.

In the usual query model (where one query gives one valug)pit is easy to see th& (V) queries are
also necessary. Classical lower bounds have also been $homore general models (e.d. [25]).

The algorithm described above requif@&V) space to store all of,,...,zy. If we are restricted tc
spaceS < N, the running time increases. The straightforward algmiﬁeedsO(N??) queries. Yaol[38]
has shown that, for the model of comparison-based branghogyams, this is essentially optimal. Name
any space~ algorithm needs timg" = Q(NQ;(I) ). For more general models, lower bounds on algoritt
with restricted spac#' is an object of ongoing resear¢h[10].

Related problems in guantum computing. In collision problem we are given a 2-1 functioii and
have to findz, y such thatf(x) = f(y). As shown by Brassard, Hgyer and Tappl! [17], collision pnob
can be solved i (N'/3) quantum steps instead 6f N''/?) steps classically2(N'/3) is also a quantur
lower bound [[1[311].

If element distinctness can be solved withqueries, then collision problem can be solved with,/ M)
queries. (This connection is credited to Andrew Yaolin [T[Hus, a quantum algorithm for element d
tinctness implies a quantum algorithm for collision but tia other way around.

Quantum search on graphs.The idea of quantum search on graphs was proposed by Aaramsb
Ambainis [2] for finding a marked item on&dimensional grid (problem first considered by Benibffl |1l
and other graphs with good expansion properties. Our waslatsamilar flavor but uses completely differe
methods to search the graph (quantum walk instead of “diaiteconquer”).

Quantum walks. There has been considerable amount of research on quantis(a@rveyed in[30])
and their applications (surveyed in [6]). Applications ddilis [€] mostly fall into two classes. The fir
class is exponentially faster hitting timés[21] 19, 29].eBecond class is quantum walk search algoritt
[36,22[8].

Our algorithm is most closely related to the second classthimdirection, Shenvi et al.[ I36] hav
constructed a counterpart of Grover’'s seaich [26] baseduantgm walk on the hypercube. Childs a

1The big-O constant depends &nFor non-constant, we can show that the number of querie®ig:> N*/(*+1)) The proof
of that is mostly technical and is omitted in this version.



Goldstone[[22, 23] and Ambainis et al.l [8] have used quantwatk w0 produce search algorithms dn
dimensional latticesd( > 2) which is faster than the naive application of Grover’s skaiThis direction is
quite closely related to our work. The algorithms byl[36,/@Rand current paper solve different probler
but all have similar structure.

Recent developments.After the work described in this paper, the results and ideas this paper
have been used to construct several other quantum algatitMagniez et al.[[32] have used our elem
distinctness algorithm to give @\(n'3) query quantum algorithm for finding triangles in a graph. Asinis
et al. [8] have used ideas from the current paper to consdréatter algorithm for search on 2-dimensiol
grid. Childs and Eisenber@ [R0] have given a different asialpf our algorithm.

Szegedyil37] has generalized our results on quantum wakddonent distinctness to an arbitrary gra
with a large eigenvalue gap and cast them into the languadéadfov chains. His main result is tha
for a class of Markov chains, quantum walk algorithms aredepigcally faster than the correspondi
classical algorithm. An advantage of Szegedy’'s approathaisit can simultaneously handle any numi
of solutions (unlike in the present paper which has sepaigtarithms for single solution case (algorith
[2) and multiple-solution case (algoritHth 3)).

Buhrman and Spalek [15] have used Szegedy’s result to umhsinO(n5/3) qguantum algorithm for
verifying if a product of twon x n matricesA and B is equal to a third matrix.

2 Preliminaries

2.1 Quantum query algorithms

Let [V] denote{1,..., N}. We consider

Element Distinctness.Given numbers:, ..., zx € [M], are there, j € [N], i # j such thate; = z;?

Element distinctness is a particular case of

Elementk-distinctness.Given numbers, ...,z y € [M], are there: distinctindicesy, . . . , i, € [N]
such thatL‘il =Tjy = ... = x’lk’)

We call suchk indicesiq, . .., ak-collision.

Our model is the quantum query model (for surveys on queryemhake [ 18]). In this model
our goal is to compute a functiofi(x1,...,zy). For examplek-distinctness is viewed as the functic
f(x1,...,xn) which is 1 if there exists &-collision consisting ofy, ... ,i; € [/N] and O otherwise.

The input variables; can be accessed by queries to an ora€land the complexity of is the number
of queries needed to compufe A quantum computation witll" queries is just a sequence of unite
transformations

Uy—-0—-U; —-0— ... Upr_1— 0O — Ur.

Uj’s can be arbitrary unitary transformations that do not delpen the input bits,...,zy. O are
query (oracle) transformations. To defilewe represent basis states@as, z) wherei consists of log V|
bits, a consists of{log M| quantum bits and consists of all other bits. The® maps|i, a, z) to |i, (a +
x;) mod M, z).

In our algorithm, we use queries in two situations. The fiitsiagion is whera = |0). Then, the state
before the query is some superposit®h , «; ., 0, z) and the state after the query is the same supe
sition with the information about;: 3, , «; .|7, z;, 2). The second situation is when the state before



query isy_; , o .|i, —x; mod M, z) with the information about:; from a previous query. Then, appl
ing the query transformation makes the staig, «; .|i, 0, 2), erasing the information about. This can
be used to erase the information abaytfrom 3°, . «; .|i, z;,2). We first perform a unitary that ma
|z;) — | — x; mod M), obtaining the stat®", , «; .|i, —r; mod M, z) and then apply the query transfc
mation.

The computation starts with a sta. Then, we applyy, O, ..., O, Ur and measure the final stat
The result of the computation is the rightmost bit of theestaitained by the measurement.
We say that the quantum computation compuytesgith bounded error if, for every = (z1,...,2n),

the probability that the rightmost bit éf-O,Ur_1 ... O, Uy|0) equalsf(x1,...,xy) is at leastl — e for
some fixede < 1/2.

To simplify the exposition, we occasionally describe a quancomputation as a classical algoritr
with several quantum subroutines of the foth0O,U;_; ... O,Up|0). Any such classical algorithm witl
quantum subroutines can be transformed into an equivaeuenicé/r O, Ur_; . .. O, Up|0) with the num-
ber of queries being equal to the number of queries in thesiclsalgorithm plus the sum of numbers
gueries in all guantum subroutines.

Comparison oracle. In a different version of query model, we are only allowed pamison queries. Ir
a comparison query, we give two indicgg to the oracle. The oracle answers whethgk x; or z; > x;.
In the quantum model, we can query the comparison oracleandtiperpositiony; ; . a; ; -|7, j, 2), where
i,j are the indices being queried ands the rest of quantum state. The oracle then performs aryn
transformationys, j, z) — —|i, j, z) for all 7, j, z such thate; < x; and|i, j,2) — |i, 4, 2) for all 4, j, z such
thatz; > z;. In sectior®B, we show that our algorithms can be adaptedigaribdel with a logarithmic
increase in the number of queries.

2.2 d-wise independence

To make our algorithms efficient in terms of running time aindhe case of multiple-solution algorithm i
section[d, also space, we ugavise independent functions. A reader who is only intebdtethe query
complexity of the algorithms may skip this subsection.

Definition 1 Let F be a family of functiong : [N] — {0,1}. F is d-wise independent if, for all-tuples
of pairwise distincti,...,ig € [N]and all¢y, ..., cq € {0,1},

Pr(f(i1) = c1, f(i2) = c2,..., f(ia) = ca] = 2—1d-
Theorem 1 [&] There exists al-wise independent famil§ = {f;|j € [R]} of functionsf; : [N] — {0,1}
such that:
1. R = O(N/d/2]y;
2. f; () is computable irO(dlog® N) time, givenj andi.

We will also use families of permutations with a similar pegjies. It is not known how to constru
small d-wise independent families of permutations. There are,gvew constructions of approximate
d-wise independent families of permutations.



Definition 2 LetF be a family of permutations ofi: [n] — [n]. F is e-approximatelyd-wise independen
if, for all d-tuples of pairwise distincty, ..., iy € [n] and pairwise distincyy, ..., jq € [n],

1—e¢ 1+e
nn—1)...(n—d+1) " n(n—-1)...(n—d+1)]

Prif(in) = g1, f(i2) = ja, -, fia) = ja] €

Theorem 2 [28] Let n be an even power of a prime number. For ahy< n, ¢ > 0, there exists ar
e-approximated-wise independent familf = {r;|j € [R]} of permutationsr; : [n] — [n] such that:

1. R =O((n® Jet)3 o)y,

2. 7;(i) is computable irO(d log? n) time, givenj andi.

3 Results and algorithms
Our main results are

Theorem 3 Elementk-distinctness can be solved by a quantum algorithm Wittv*/(*+1)) queries. In
particular, element distinctness can be solved by a quarsiigarithm withO(N2/3) queries.

Theorem 4 Letr > k, r = o(N). There is a quantum algorithm that solves element distesstrwith
O(max(%, r)) queries and ané&-distinctness witkﬂ(max(%, 7)) queries, using(r(log M+log N))
gubits of memory.

TheorentB follows from Theorel 4 by setting= | N%/?| for element distinctness amd= | N*/(k+1) |
for k-distinctness. (These values minimize the expressionthéonumber of queries in Theordin 4.)

Next, we present Algorithn{d 2 which solves element distiess if we have a promise that, ..., zy
are either all distinct or there is exactly one paif, ¢ # j, ; = x; (and k-distinctness if we have .
promise that there is at most one setahdicesiy, ..., such thatr;, = x;, = ... = x;,). The proof
of correctness of algorithid 2 is given in sectldn 4. Aftertthia sectiorb, we present Algorithih 3 whic
solves the general case, using Algorithim 2 as a subroutine.

3.1 Mainideas

We start with an informal description of main ideas. For dinify, we restrict to element distinctness al
postpone the more genetaldistinctness till the end of this subsection.

Letr = N?/3. We define a grapid with () + (,) vertices. The verticess correspond to set
S C [N] of sizer andr + 1. Two verticesvs andvr are connected by an edgelif= S U {i} for some
i € [N]. Avertex is marked ifS containsi, j, z; = ;.

Element distinctness reduces to finding a marked vertexisngttaph. If we find a marked vertex,
then we know that; = x; for somei, j € S,i.e.zy,...,xy are not all distinct.

The naive way to find a marked vertex would be to use Grovemtun search algorithna [26,116].

e fraction of vertices are marked, then Grover’'s search fintisieked vertex afte@(ﬁ) vertices. ASSUME



that there exists a single pairj € [N] such thati # j, 2; = x;. For a randomS, |S| = N?/3, the
probability ofvg being marked is

N2/3 N2/3 -1 1
N N1 — (1-— 0(1))—N2/3.

Prlie S;5 €8] =Prlie S|Pr[je SlieS]=

Thus, a quantum algorithm can find a marked vertex by exami@i@ﬁ) = O(N'/3) vertices. However

to find out if a vertex is marked, the algorithm needs to quER® itemsz;, i € S. This makes the tota
query complexityO(N'/3N?/3) = O(N), giving no speedup compared to the classical algorithm kv
gueries all items.

We improve on this naive algorithm by re-using the inforroatirom previous queries. Assume that
just checked ifus is marked by querying alt;, ¢ € S. If the next vertexp is such thafl” contains onlym
elementsi ¢ S, then we only need to query. elementsz;, i € T\ S instead ofr = N2/3 elementsy;,
1efT.

To formalize this, we use the following model. At each momem are at one vertex ¢f (superposition
of vertices in quantum case). In one time step, we can exaifrtine current vertexs is marked and mov
to an adjacent vertex;. Assume that there is an algorithsthat finds a marked vertex withf moves
between vertices. Then, there is an algorithm that soheaeht distinctness it/ + r steps, in a following
way:

1. We user- queries to query alt;, ¢ € S for the starting vertexsg.
2. We then repeat the following two operatiahstimes:

(&) Check if the current vertexs is marked. This can be done without any queries becaus
already know ally;, i € S.

(b) We simulate the algorithm until the next move, find the vertex- to which it moves fronvg.
We then move tar, by queryingz;, i € T\ S. After that, we know allz;,7 € T'. We then set
S=T.

The total number of queries is at mast + r, consisting ofr queries for the first step and 1 query
simulate each move of.

In the next sections, we will show how to search this graph bgntum walk inO(N?/3) steps for
element distinctness art@( N*/(+1)) steps fork-distinctness.

3.2 The algorithm

Letzy,...,zn € [M]. We consider two Hilbert spacé¢ and’. H has dimensior(];f)MT(N —r) and
the basis states dff are|S,z,y) with S C [N], |[S| = r,z € [M]",y € [N]\ S. H' has dimensior
(T]L)MT“(ML 1). The basis states 6’ are|S, z,y) with S C [N], |S| =r+1,z € [M]"*!,y € S. Our
algorithm thus uses

o((Fprnen (£ otn) v

qubits of memory.



1. Apply the transformation mapping)|y) to
2 2
) ((—1 bt ¥ ry'>> .
N=r N=r Y¢Sy #y

on theS andy registers of the state K. (This transformation is a variant of “diffusion transfaam
tion” in [26].)

2. Map the state frori( to H’ by addingy to S and changing: to a vector of lengttk + 1 by introducing
0 in the location corresponding {0

3. Query forz, and insert it into location af corresponding tg.
4. Apply the transformation mappird)|y) to

o((estwe i, 3, 0)

y'eSy #y

on they register.
5. Erase the element afcorresponding to new by using it as the input to query far,.

6. Map the state back t& by removing the 0 component correspondingytsfom = and removingy
from S.

Algorithm 1: One step of quantum walk

In the states used by our algorithmwill always be equal tdz;, , . . . , z;,) whereiq, . .. , i, are elements
of S'in increasing order.

We start by defining a quantum walk @hand?’ (algorithm[l). Each step of the quantum walk ste
in a superposition of states . The first three steps map the state frafrto H' and the last three stey
map it back taH.

If there is at most ong-collision, we apply AlgorithniR#; andt, arecy/r anch(%’“/2 for constants
c1 andcy which can be calculated from the analysis in sedilon 4). &lgerithm alternates quantum wa
with a transformation that changes the phase if the curtate sontains &-collision. We give a proof of
correctness for Algorithrfll 2 in secti@h 4.

If there can be more onke-collision, element-distinctness is solved by algorithith 3. Algorittith 3 is
classical algorithm that randomly selects several sulmgetsand runs algorithril2 on each subset. We ¢
Algorithm[3 and its analysis in secti@h 5.



1. Generate the uniform superpositi (N)l(N—r) 218|=ryes [S)Y)-

2. Query allx; for i € S. This transforms the state to

! S 1S) ) @ i)

(N) (N - T) |S|=r,y¢S i€S

T

3. t; = O((N/r)¥/?) times repeat:

(a) Apply the conditional phase flip (the transformat||cﬂj|y>|x> — —|S)|y)|z)) for S such that
Tiy = Tiy, = = x;, for kdistinctiy, ... i, € S.

(b) Performty = O([) steps of the quantum walk (algoritHth 1).

4. Measure the final state. CheckSiftontains &-collision and answer “there isfacollision” or “there
is nok-collision”, according to the result.

Algorithm 2: Single-solution algorithm

4 Analysis of singlek-collision algorithm

4.1 Overview

The number of queries for algorithith 27idfor creating the initial state an@((N/r)*/2\/r) = O(%)

for the rest of the algorithm. Thus, the overall number ofrseisO (max(r, T(],}’_%)). The correctness c

algorithm[2 follows from

Theorem 5 Let the inputzy, ..., zy be such thaty;, = ... = x;, for exactly one set of distinct values
i1,...,1. With a constant probability, measuring the final state gbaithm[2 givesS such thati,, ..., i €
S.

Proof: The main ideas are as follows. We first show (Leniiha 1) thatrithgo’s state always stays in
2k + 1-dimensional subspace &f. After that (Lemmd2), we find the eigenvalues for the unitaaysfor-
mation induced by one step of the quantum walk (algoriffinrestricted to this subspace. We then Ic
at algorithm® as a sequence of the foft, U )" with U; being a conditional phase flip arid, being a
unitary transformation whose eigenvalues have certaipepties (in this casd/s is to steps of quantun
walk). We then prove a general result (Lemipha 3) about suchesegs, which implies that the algorith
finds thek-collision with a constant probability.

Let |S,y) be a shortcut for the basis stdt€) ®;cs |z;)|y). In our algorithm, thelz) register of a
state|S, x, y) always contains the state;cs|x;). Therefore, the state of the algorithm is always a lin
combination of the basis statgs y).

We classify the basis statéS, y) (/S| = r, y ¢ S) into 2k + 1 types. A statesS, y) is of type(j,0) if
|SN{i1,...,ix}| =jandy ¢ {i1,...,i} and of type(y, 1) if [SN{i1,...,ix}| = jandy € {i1,... ik}



Forj € {0,...,k — 1}, there are both typgj, 0) and type(j, 1) states. Foj = k, there are onlyk, 0) type
states. (k, 1) type is impossible because, [§ N {i1,...,ix}| = k, theny ¢ S impliesy ¢ {i1,...,ix}.)

Let |¢;;) be the uniform superposition of basis stat8sy) of type (j,/). Let H be the 2k + 1)-
dimensional space spanned by statges).

For the space(’, its basis statelss, y) (|S| = r+ 1, y € S) can be similarly classified int®k + 1 types.
We denote those typdg, ) with j = |S N {i1,..., i}, I = 1if y € {i1,...,ix} andl = 0 otherwise.
(Notice that, sincg € S for the spacét’, we have typ€k, 1) but no type(0, 1).) Let|y; ;) be the uniform
superposition of basis statés, y/) of type (4, 1) for spaceH’. Let H' be the ¢k + 1)-dimensional spac:
spanned byy; ;). Notice that the transformatioi, y) — |S U {y},y) maps

[Vi0) = l@io)s Y1) = lgit1,1)-
We claim
Lemma 1 In algorithm[l, steps 1-3 maf to H’ and steps 4-6 map’ to .

Proof: In sectiol4P. |}

Thus, algorithnfll map# to itself. Also, in algorithni®, stefiBa maps; o) — —|1x0) and leaves
|;1) for j < k unchanged (because;;), j < k are superpositions of states, y) which are unchange
by stepC3b andyy, o) is a superposition of states, y) which are mapped te-|S,y) by step[3b). Thus
every step of algorithril] 2 maps to itself. Also, the starting state of algorithth 2 can be esged as :
combination ofiy; ;). Therefore, it suffices to analyze algorithis 1 Bhd 2 on rtsH.

In this subspace, we will be interested in two particulatestal et|+)s;.,¢) be the uniform superpositio
ofall|S,y), |S| =7,y & S. Let|tgo0d) = |91,0) D€ the uniform superposition of al¥, y) with iy, ... i, €
S. |Ysiare) is the algorithm’s starting statex),.0q) iS the state we would like to obtain (because measu
[Vg00d) Qives a random sef such that{i, ..., i, } C S).

We start by analyzing a single step of quantum walk.

Lemma 2 LetU be the unitary transformation induced 616 by one step of the quantum walk (algorith
). U has2k + 1 different eigenvalues if{. One of them is 1, with)¢) being the eigenvector. The oth
eigenvalues are™%1i, .. 0% with 0; = (21/7 + 0(1))%.
Proof: In sectioZP. |} ) )

We sett; = [#\/_1 Since one step of quantum walk fixe§ ¢, steps fixH as well. Moreover,

Y (1)
[¥siare) WiIll still be an eigenvector with eigenvalue 1. The oti2ér eigenvalues become (v
Thus, every of those eigenvalues:i8 with 6 € [c, 27 — ¢], for a constant independent ofV and--.

Let stepU; be stef-3a of algorithil 2 arld, = U2 be stefz3b. Then, the entire algorithm consists
applying (UsUy )™ 10 |t)siart ). We will apply

Lemma 3 LetH be a finite dimensional Hilbert space and, ), ..., |¢,,) be an orthonormal basis fot.
Let|1g00d): [Ystart) D€ two States ifit which are superpositions ¢f1), . . ., [1,,) with real amplitudes anc
(Ygood|Vstart) = . LetUy, Us be unitary transformations of with the following properties:

1. U, is the transformation that flips the phase [@o0a) (U1]%g00d) = —|¥g004)) @and leaves any stat
orthogonal tofz/4.04) Unchanged.



2. Us is atransformation which is described by a real-valued< m matrix in the basigiy1), . . ., ().
Moreover,Us|Ysiart) = |¥siare) @nd, if [¢) is an eigenvector o/, perpendicular to1)s;q,¢), then
Us|tp) = €|np) for 6 € [e,2m — €], 6 # 7 (Wheree is a constantg > 0)?

Then, there exists = O(1) such that|(¢geea| (U2U1) [¥stare)| = ©(1). (The constant unde(1) is
independent oft but can depend oa)

Proof: In sectiol4B. |}

By LemmalB, we can set = O(é) so that the inner product d/sUs)" |stare) @Nd [¢hgeoa) is
a constant. Sincéyy..q) is a superposition ofS,y) over S satisfying {i1,...,i,} € S, measuring
(UsUr) " |9stare) Qives a sefS satisfying{iy, ..., i} C S with a constant probability.

It remains to calculate.. Let o’ be the fraction ofS satisfying{i1,...,ix} C S. Since|ysrt) IS the
uniform superposition of allS, y) and|t4.04) is the uniform superposition ¢, y) with {i;,... i} C S
we haven = V.

—

rk

(N k k—
(1= o(1)) 57

@ -

Thereforeo = Q(Nm) andt; = O((N/r)*/2). |

LemmalB might also be interesting by itself. It generalizes of analyses of Grover’s algorithiml [3
Informally, the lemma says that, in Grover-like sequencearfsformationgU,U; )¢, we can significantly
relax the constraints ali; and the algorithm will still give similar result. It is quitiely that such situations
might appear in analysis of other algorithms.

For the quantum walk for elemehtdistinctness, Childs and Eisenbelrgl[20] have improveaitiaysis
of lemmd[B, by showing thai)yo.q| (U2U1)![¢siare) (@nd, hence, algorithm’s success probabilityl)-s(1).
Their result, however, does not apply to arbitrary transftionst/; andU; satisfying conditions of lemm:

a

:PT[{il,.. ’Lk}CS]

:1

<.

4.2 Proofs of Lemmagll andl?

Proof: [of Lemmal[l] To show that{ is mapped tdH’, it suffices to show that each of basis vect
|v;,) is mapped to a vector ifit’. Consider vectorsy; o) and|y; ;) for j € {0,1,...,k — 1}. Fix S,
IS N {i1,..., ik} = j. Wedivide[N] \ S into two setsS, and.S;. Let

So={y:y €[N\ S,y ¢ {ir,...,ik}},

Sy ={y:yc[N]\S,yec{is,...,ip}}.
Since|S N {i1,...,ix}| = j, S1 containss; = k — j elements. Since&, U 51 = [N] \ S contains
N — r elements Sy containssy = N —r — k + j elements. Defin@)gs o) = \/m >yes, 1S y) and

[Vs,1) = \/— Y yes, 1S,y). Then, we have

1
¥i0) = === > [9s,0) 1)
G G5)  sisi=r
[SO{i1,in =3
2The requirement # « is made to simplify the proof of the lemma. The lemma remains if @ =  is allowed. At the end
of sectiorZB, we sketch how to modify the proof for this case
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and, similarly forj+; 1) and|tg 1).

Consider the step 1 of algorithith 1, applied to the statg)). Let|yy ) be the resulting state. Since tl
|S) register is unchangedss ) is some superposition of statg% y). Moreover, both the state’s o) and
the transformation applied to this state in step 1 are iavaminder permutation of statés y), y € Sy or
states S, y), y € Si. Therefore, the resulting state must be invariant unddr pecmutations as well. Thi
means that everys, y), y € Sp and everyS,y), y € S1 has the same amplitude finrg ,). This is equivalent
to [¥s) = alpso) + blths1) for somea, b. Because of equatiofil(1), this means that step 1 maps
to althj o) + bltpj1). Steps 2 and 3 then map; o) to [p;0) and|v;1) to p;11). Thus,|v;0) is mapped
to a superposition of two basis statestof |p; o) and|¢;41,1). Similarly, [1; 1) is mapped to a (different
superposition of those two states.

Forj = k, we only have one state), ). A similar argument shows that this state is unchanged fgy
1 and then mapped @y o) which belongs t’.

Thus, steps 1-3 mah to H’. The proof that steps 4-6 map to H is similar. |
Proof: [of Lemmal2] We fix a basis foH consisting ofib; ), |1j1), 7 € {0,...,k — 1} and|¢y ) and a
basis forH’ consisting ofipo ) and|p;.1), [¢j0), § € {1,...,k}. Let D, be the matrix

D — —142 2ve—e?
ol 2ve—€2  1—2 '

Claim 1 Let U; be the unitary transformation mappirig to /’ induced by steps 1-3 of quantum wa
Then,U; is described by a block diagonal matrix

D_x 0 0
N—r
0 Dy 0
N—r
Ul = . )
0 0 D, 0
N—r
0 0 1
where the columns are in the basig o), [%0,1), [¢¥1,0), [¥1.1), .-, |¥k0) and the rows are in the basi

0)-

Proof: Let H; be the 2-dimensional subspace &f spanned byji; o) and [1;1). Let H’; be the 2-
dimensional subspace &f spanned bye;o0) and|p;ii.1).

From the proof of LemmBl1, we know that the subspages mapped to the subspa@éj. Thus, we
have a block diagonal matrices wighx 2 blocks mappingH; to H’ and1 x 1 identity matrix mapping
|Yk,0) 10 |¢k0). It remains to show that the transformation frdm) to H’ is D = Let S be such that

IS N {ir,...,ig}H| = J. Let Sy, S1, [¥s0), |¥s,1) be as in the proof of lemnia 1. Then step 1 of algorit
[ mapsl|ys,0) to

10,00 [¢1,1), [€1,0)5 [02,1)5 - - 1 [Ok,1)s

_Z(< 1+L>]Sy>+ > NLT’S’M)

yES yAyy'Es

2
<1+N—+(80—1N )Z\Sy +80\/_N

yE€So

o

y651
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2 2
= (14 22 fsob + 2 )

By a similar calculation|is 1) is mapped to
2s 2./s0s 2s 2,/s05
(—14 ) sa) + 22 o) = (1= ) [0s) + S )
- N—r
Thus, step 1 produces the transformatlah on [vYs,0) and|yg 1). Since|¢j,0> and|; 1) are uniform
N—r

superpositions ofys o) and|is,1) over all.S, step 1 also produces the same transformafion; on|«; )
N—r

and|vy; 1). Steps 2 and 3 just map; ) to |¢;0) and|v; 1) to|ejr1).
Similarly, steps 4-6 give the transformatiéh described by block-diagonal matrix

1 0 0 0
0 D, 0 0
r+1 , 0
= |0 0 D
0 0 0 D,

from H' to H. Here, D’ denotes the matrix

D —14+2 2ve—e? '
€ 2vVe—e€2 1 —2¢

A step of quantum walk i§/ = UsU;. Let V be the diagonal matrix with odd entries on the diago
being -1 and even entries being 1. Sil¢é = I, we haveU = U,V2U, = UsU] for U = U,V and

Ul =VU. Let
E—( 1—2¢ 2\/6—62)
Ol —2vVe—€e2  1-—2¢ '

Then, U; and U}, are equal td/; andUs,, with every D, or D! replaced by corresponding.. 7We
will first diagonalizeU; andU; separately and then argue that eigenvaluds;éf; are almost the same ¢
eigenvalues ot/;.

Sincely} is block diagonal, it suffices to diagonalize each blotk 1 identity block has eigenvalue :
For a matrixE, its characteristic polynomial is> — (2 — 4¢)\ + 1 = 0 and its roots aré — 2¢ + 2v/e — ¢2i.

. LZ
Fore = o(1), this is equal toe*(2t0(1))ivVe Thys, the eigenvalues @f; are 1, and W ZE for

, - . +(240(1)) i .
j€{1,2,... k}. Similarly, the eigenvalues @f; are 1, anc: vN=rforj € {1,2,...,k}.

To complete the proof, we use the following bound on the eigleres of the product of two matrice
which follows from Hoffman-Wielandt theorem in matrix apsis [27].

Theorem 6 Let A and B be unitary matrices. Assume thdthas eigenvalue$ + 44, ..., 1 + §,,, B has
eigenvalueg.y, ..., 1, and AB has eigenvalueg], ..., u.,. Then,

m
My _N;'| < Z |6
i=1
forall j € [m].
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Proof: In sectio4k. |
Let A = U] andB = Uj. Sincele“ — 1| < |¢|, each of|j;| is of orderO(ﬁ

is of orderO(\/l_) as well. Thus for each eigenvalueld, there is a corresponding eigenvaluegl/;
that differs by at most b@(

). Therefore, their sun

1
— ). The lemma now follows fror“\/N 0(\/7~Tl)' [ |

4.3 Proof of Lemmal3

We assume thdty| < ce? for some sufficiently small positive constantOtherwise, we can just take= 0
and geq <¢good|(U2U1)t|wstm"t>| = |<¢good|wstart>| = |Oé| > ce?.

Consider the eigenvalues bf,. SincelUs is described by a reah x m matrix (in the basigy,), .. .,
lvm)), its characteristic polynomial has real coefficients. fEfare, the eigenvalues are 1, €1, ..,
e+, From conditions of the lemma, we know that the eigenvalu€™of= —1 never occurs.

Let [w;, 1), |w;,—) be the eigenvectors &f, with eigenvalues™®, e~ Let|w; ) = 5_, ¢j jrlib).
T'hen, we can assume thab; ) = 23,:1 ¢ #[¥j). (SinceUs is a real matrix, tgkingjg\wj,g =
ei|w; 1) and replacing every number with its complex conjugate giiglsy) = e~i|w) for |w) =

! *
=1 Cj,j/|7vz)j’>-)

We write [1)40,4) in @ basis consisting of eigenvectorslof:

l

—|wj,—)). 2)

‘ ¢good> =« ‘ 7#stm‘t

W. . 0. g., assume that is a positive real. (Otherwise, multiplys:.,¢) by an appropriate factor to mak
« a positive real.)

We can also assume thaf . = a;_ = a;, with a; being a positive real number. (To see that,
[Ygood) = Yh—y bjrtbj). Then,b;, are real (by the assumptions of LemMa 3). We have, |1yo0d) =

Qe = Yhimy by and (w) _[good) = aj— = Sby by(ciy)* = (Shoy breiy)* = . Multi
plying |w; 1) by |a + and|wj,-) by (3-+ makes bothu;,, anda%_ equal toauiﬂf = |a; 1| whichis a
positive real.)

Consider the vector

! !
. =0+ .0+
lvg) = « (1 +icot = ) |Vstart) Zaj (1 + i cot jTﬁ> lwj.+) —I—Zaj (1 + i cot -2 5 ﬁ) |wj ).
j=1 j=1
)
We will prove that, for some = Q(a), |vg) and|v_gs) are eigenvectors df,U;, with eigenvalues®%.
After that, we show that the starting stdté.,;) is close to the state\}—§|u5> + %|u_ﬁ>. Therefore,

repeatingUs Uy % times transformsgi)...,¢) to a state close te\/%wm + ;—%\v,m which is equivalent tc
%|v5> — %|u_ﬁ>. We then complete the proof by showing that this state hasstant inner product witt
|77Z)good>-

We first state some bounds on trigonometric functions thibeiused throughout the proof.

Claim2 1. %2 <sinz <z forall z € [0, ];

s 1 s
2. iz <cotzx < Efora” WS [0, Z]

13



We now start the proof by establishing a sufficient condifm|vs) and|v_g) to be eigenvectors. W
havelvg) = [¢g00d) + i|v};) Where

s l —0;+ 0 l 0;+ 8
) = acot §\¢smrt) + Z aj cot jT’ijr) + Z aj cot -2 5

j=1 j=1

|wj, ). (4)
Claim 3 If |v) is orthogonal t0t)4004), then|vg) is an eigenvector df, Uy with an eigenvalue of’% and
|v_g) is an eigenvector df’,U; with an eigenvalue af b,

Proof: Since |v) is orthogonal t0Y)ye0q), We havelUi|vy) = |v) andUilvg) = —[¥g00a) + i[V}).
Therefore,

l
. ) —0.
U2U1’vﬂ> = (—1 + 2 cot g) ’wstart> + Z ajezaj (—1 + 2 cot 7'72_’_ ﬂ) ]w]7+)+
i=1

!
, 0.
Zajeﬂej (—1 + i cot - ;ﬂ> lwj ).
j=1

Furthermore, ‘
) sinz +icosz €5
1+icotx = - = — ,
sin x sin x
. —sing +icosx ezt
—1+4+icotx = - = — ,
sinx sinx
Therefore,

(—1+icot g) = (l—i-icot g),

r, 9% B
0 g 48\ SGTEED  o4p
i0; [ J — _ B J
e ( 1+1icot > ) o 79];% e <1+’Lcot 5 )

and similarly for the coefficient ofv; ). This means that/sU; [ug) = €¥|vg).

For|v_g), we write out the inner produc(ﬂ;good]vg) and<ngood\vLﬂ). Then, we see thatbgood]viﬁ> =
—(¥gooa|vy). Therefore, if|1)y004) and |vj;) are orthogonal, so arg)geos) and |v” z). By the argumen
above, this implies thdt_s) is an eigenvector dfi,U; with an eigenvalue . |

Next, we use this necessary condition to bogrfdr which|vz) and|v_g) are eigenvectors.

Claim 4 There exist$} such thaﬂu’5> is orthogonal to]t4004) and % < 6 < 2.6a.

Proof: Let f(3) = (1good|vs). We have

l
f(B) = a?cot g +> la;|? (cot _gj;—ﬁ + cot bi ;—ﬁ) .

Jj=1
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We boundf(3) from below and above, fo$ € [0, 5]. For the first term, we havg; < cot g < % (by claim
[2). For the second term, we have

—(9j+ﬁ (9j+ﬁ Sinﬂ
cotT—Fcot > T o J+ﬁ 2—6' (5)

For the numerator, we ha\}? < sin 3 < 3, because of Claifll2. The denominator can be bounded
below as follows: )
L0, +B8 . 0;,-0 € € €
> —gin— >
Sin 2 Sin 2 SlIl 2 SlIl 4 = 271'2’
with the first inequality following from?; > ¢ and3 < § and the last inequality following from claifd

This means

1— 2\ 2 9 1— 2
@l - Ly sl - 120

where we have useffgooql|> = |af> + 235 |a;|? (by equation [R)) and|vyeeal| = 1 to replace

l
j=1 |a;

The lower bound of equatiofll(6) implies th&t3) > 0 for 5 = ma. The upper bound implie:
that f(5) < 0 for g = \/ﬂ ~«a. Since f is continuous, it must be the case thydls) = 0 for some

B, (6)

f V1
Be [\/%(i_ag a, = al. The claim now follows fron) < « < 0.1. |}
Let |uy) = |||”ﬁ)” and|ug) = |||Z:‘;>”. We show thatis.¢) is almost a linear combination ¢f,) and

lug). Define|tenqg) = |||Z€”Z>” where

l l
b, 6
Vend) = D a; (1 + i cot —) lwj4) + > a; (1 +icot J) lwj ). (7)
Jj=1 j=1
Claim 5
|U1> = Cstarti|q/)start> + Cend|¢end> + |U/1>,

|U2> = _Cstarti|¢start> + Cend|¢end> + |U/2>

Wherec, art, Cena are positive real numbers and,, v}, satisfy||« || < 32 and ||u || < %, for 8 from Claim
a.

Proof: By regrouping terms in equatiofl (3), we have

lvg) = av cot §‘¢8t0«7“t> + [Vend) + \Ug> (8)

where

l
. —0; + 'y
|Ug> = alYstart) + Z a;t (cot 32 b — cot TJ) lwj )

Jj=1
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9.
+zaj (oot 22 ot % ) s ).

We claim that|vj|| < %H%H- We prove this by showing that the absolute value of each effictents in
|ug> is at most% times the absolute value of corresponding coefficieniti. The coefficient ofigqrt)
is cin [v) anda(1 + icot §) in ug). We have

8
T3

which means that the absolute value of the coefficierft/of,,+) in [vj) is at most%ﬂ times the absolute
value of the coefficient ifwg). For the coefficient of thew; ), we have

|y (1—|—ZCOtﬁ)| >acot§ > oa—

—0; —0, sin 2
cotﬂ—co‘c 1 — +62
2 sin — J sin —* 2
If 6; — 3 > 5, then
0 B 8 B8
sin & 2 L 0.
—= < =2 = 2 :ﬂ§51+ic0tﬂ.
in =0t gin =% |~ sinZsinZ L L
SIDTSIDT 1 1 \/i\/i
If 0, — 3 < 5, then
B .y s
il = S 3 cot _6j+ﬁ < 2 cot _6j+ﬁ <3é cot e
=08 b 0,48 . =9 2 - LY 2 T e 2 ’
sin —4—= sin —* cos —5—— sin —% ek

s 1
sil =%
Claim[3). Therefore, the absolute value of coefficientef ;) in [v7) is at most% times the absolute valu
of the coefficient offw; ;) in |vg) (which is|a;(1 + icot ﬁﬁ)]). Similarly, we can bound the absolu
value of coefficient ofw; ).

By dividing equation[(B) by|vg||, we get

. - . . . —0,+8 . . 2|z .
with the first inequality following from cos —5—| > | cos and|sinz| = sin|z| > = (using

|U1> = cstarti|wstart> + Cend|¢end> + |U/1>

acot g

for csiare = ||v—g||2’ Cend = llﬁ;gﬁ|| and|u,1> =
proof forus is similar. |
Sincelu; ) and|us) are eigenvectors @f»U; with different eigenvalues, they must be orthogonal. The
fore,
g

By=o
6) ’

. 3 3
moy ). Sincellugl < 25 ||vg]|, we havel|u; || < 22, The

<’U,1‘U2> - _Cgtart + and + O(

WhereO(g) denotes a term that is at m&stnstg in absolute value for some constawt.st that does not
depend org ande. Also,
g

HU1”2 = cztart + cgnd + O(z) = 1.
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These two equalities together with,.+ andc,,,4 being positive reals imply that;,,; = % +O(B/e) and
Cond = % + O(B/e¢). Therefore,

|U1> - %Z’|wstart> + %|wend> + |U/1/>,

1 . 1
|U2> = _EZ|¢start> + ﬁ|¢end> + |u’2'>,
with ||uf|| = O(B/e) and||uf|| = O(5/¢). This means that

‘¢8t0/l‘t> = > + ”Ll),>,

_L‘ >+L‘
\/§UI \/§u2
’ >— 1’ > 1‘ > ’”>
Yend \/im +\/§U2 + |w”),

wherew’ andw” are states withjw'|| = O(8/¢) and||w” | = O(B/¢). Lett = [ 55 ]. Then,(UyUy)|uy) is
almosti|u) (plus a term of orde©(3)) and (UyU1 )t |uz) is almost—i|us). Therefore,

(UZUl)t|¢start> = |¢end> + |UI>
where||v'|| = O(3/€). This means that
|<¢good|(U2Ul)t|¢start>| > |<¢good|¢end>| - O(g) (9)

Sinces < 2.6a anda = ce?, we haveO(3/€) = O(e). By choosinge to be sufficiently small, we can mak
theO((3/¢) term to be less thaf.1e. Then, Lemmal3 follows from

Claim 6

) 1—a? 1—-a?
|<¢good|¢end>| > min < 5 R 1 6) .

Proof: Since|ie,q) = lvend) \ye have(ygood|Vend) = Wgoodlvena) By definition of |v.,.4) (equation (7)),

- ”Uend” ! ”vend”

<¢good’vend> = 225’:1 a?- By equatlon KB)ingOOdHQ — OJQ + 222,:1 a?_ Since”¢good“2 — 1, we have
A2
<¢good|vend> =1- O£2. Ther6f0re,<1/)good|q/)end> > Il—a

Ivend”.
We havel|venq||? = 222-:1 a?(l—i—cot2 %]) Sincedy, € [e, 21 —¢], ||vend||* < 222-:1 a?(l-i—cot2 5) <
(1 + cot?§) and

1—a? 1—a2 1—-a2 1—a2
<¢good"¢end> > - > “ € > min “ ) “ €.
1 + cot?(e/2) 2max(1,cot §) 2 4

If « is set to be sufficiently small{1y00d|?end)| is close t00.5¢ and, together with equatiofl(9), th
means thal(Ygooa|(U2U1)! [Ystare) | is Of orderQ(e). |
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Remark. If U; has eigenvectors with eigenvalue -1, the equafibn (2) besom
l
= 0brtar) + 37054 )+l ) + v o).

with |w; 1) being an eigenvector with eigenvalue -1. We alsoade(1—i tan 5 )|wl+1> —ajy1itan 2|wl+1
anda;1|w;, 1) terms to the right hand sides of equatidis @), (4) &hd (Spefalvely ClaimgI314]5 arhdl
remain true, but proofs of claims require some modificattorsandle théw; ;) term.

4.4 Derivation of Theorem[®

In this section, we derive Theordn 6 (which was used in thefppb Lemmal2) from Hoffman-Wieland
inequality.

Definition 3 For a matrixC' = (c;;), we define itgo-norm as||C|| = /3=, ; |c§j|.

Theorem 7 [27), pp. 292] IfU is unitary, then|UC/|| = ||C|| for anyC.

Theorem 8 [27), Theorem 6.3.5] Le€ and D bem x m matrices. Letus, ..., uy and yf, ..., 1), be
eigenvalues of' and D, respectively. Then,

> (s — i) < O = DI,

To derive theoren]6 from theorelth 8, I€t= B andD = AB. Then,C — D = (I — A)B. Since
B is unitary, ||C — D|| = ||I — AJ| (Theorenl}). LeU be a unitary matrix that diagonalizes Then,
UIl-AUt=T1-UAUYand||I—-A| = ||[I-UAU!|. SinceU AU is a diagonal matrix with +§;
on the diagonall — U AU ! is a diagonal matrix witts; on the diagonal anfif — UAU (|2 = -7, |6;]?
By applying Theorerfll8 td andU AU !, we get

D (ki =) <D0l
i=1 i=1

In particular, for every, we have(u; — u})? < (3, 6;%) and

— il <\ 2\5\2<Z!5!

5 Analysis of multiple k-collision algorithm

To solve the general case éfdistinctness, we run Algorithridl 2 several times, on subsétéhe input
Tt € [N]

The simplest approach is as follows. We first run Algorifinn2ioe entire input;,7 € [N]. We then
chose a sequence of subsEtsC [N], T, € [N], ... with T; being a random subset of sigh| = (522 )'N,
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1. LetT) = [N]. Letj = 1.
2. While |T;| > max(r, V' N) repeat:

(@) Run Algorithn® on;, @ € T}, using memory size; = % Measure the final state, obtaini
a setS. If there arek equal elements;, i € S, stop, answer “there is/acollision”.

(b) Letg; be an even power of a prime witld;| < ¢; < (1 + 2kg)\T |. Select a random perm(
tation 7; on [¢;] from an %-approximaterZk log N-wise independent family of permutatioy

(TheorentD).
2k
]}Jrl = {7‘(1—171'2_1...71']_1( ) 1€ Hrmq]—‘:l}

(c) Let
3. If |T3] < r, query allz;, i € T; classically. Ifk equal elements are found, answer “there |
k-collision”, otherwise, answer “there is rkecollision”.

(d) Letj=j + 1;

4. If |T;] < v/N, run Grover search on the set of at mo&t/? k-tuples(ii, . . . , i) of pairwise distinc
i1,...,1, € T}, searching for a tupléii, . .., i) such thatr;, = ... = z;, . If such a tuple is foung
answer “there is &-collision”, otherwise, answer “there is riecollision”.

Algorithm 3: Multiple-solution algorithm

and run Algorithni2 on;, i € Ty, then onz;, i € T» and so on. It can be shown that, if the inpyti € [NV]
contains &:-collision, then with probability at least 1/2, there esigtsuch thatc;, 7 € T contains exactly
one k-collision. This means that running algoritiith 2 op: € T finds thek-collision with a constan
probability.

The difficulty with this solution is choosing subséfs. If we chose a subset of sizﬁ%N uniformly
at random, we nee@ (V) space to store the subset &n@V) time to generate it. Thus, the straightforwa
implementation of this solution is efficient in terms of gueomplexity but not in terms of time or spac
Algorithm[3 is a more complicated implementation of the sapgroach that also achieves time-efficier
and space-efficiency.

We claim

Theorem 9 (a) Algorithm[3 use®)(r + k - /2) queries.

(b) Letp be the success probability of algorithith 2, if there is exaotiek-collision. For anyzxy, ..., xx
containing at least oné-collision, algorithm[B finds &-collision with probability at least1 —

o(1))p/2.

Proof:
Part (a). The second to last step of algoritith 3 use at mogteries. The last step us€§ N ’“/4)

. . . . Nk/2 Nk/2 4
gueries and is performed only{fN > r. In this case, -z = No—D/A = NFk/4. Thus, the last twc
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steps us®(r + —z= 1)/2) queries and it suffices to show that algorithin 3 u9¢s + = 1)/2) queries in its
second step (the while loop).

Let T; andr; be as in algorithnl]l3. Thef¥| = N and|Tj| < 2k+1(1 + 52)|T}5|. The number of
queries in theg''" iteration of the while loop is of the order

T T Tir _ NEDE o D
r(k—l)/Q J (’71].‘74/]\7)(1@—1)/2 N r(k=1)/2 N
J

The total number of queries in the while loop is of the order

Nh-1)/2 T\ & o 2241\ NH2 o% 2241
zj:<r<’f1>/2 VITi+ =y SJZ;) M1 2K o T\ 2k )"

NEk/2
Part (b). If z1,...,zy contain exactly oné-collision, then running algorithfd 2 on all of;, . . .,z finds
the k-collision with probability at leasp. If z1,...,xy contain more than onk-collision, we can have

three cases:
1. For somegj, T; contains more than onecollision but7};; contains exactly ong-collision.
2. For somegj, T; contains more than onecollision but7},; contains nok-collisions.

3. All T} contain more than onke-collision (till |7;| becomes smaller thanax(r, v/N) and the loop is
stopped).

In the first case, performing algorithiih 2 an, j € T;4: finds thek-collision with probability at leasp.
In the second case, we have no guarantees about the progbabidill. In the third case, the last step
algorithm[3 finds one of-collisions with probability 1.

We will show that the probability of the second case is alwlags than the probability of the first ca
plus an asymptotically small quantity. This implies thaithaprobability at least /2 — o(1), either first or
third case occurs. Therefore, the probability of algorifffinding ak-collision is at least1/2 — o(1))p.
To complete the proof, we show

Lemma 4 Let T be a set containing @-collision. LetNone; be the event that;,i € T} contains no
k-collision andUnique; be the event that;, ¢ € 7 contains a uniqué-collision. Then,

) 1
Pr{Unique;|Ty = T) > Pr[Nonej|T; = T] — o (m) (11)

wherePr[Unique;1|T; = T|and Pr[None;1|T; = T] denote the conditional probabilities dfnique; 1
andNoneji1,ifT; =T.

The probability of the first case is just the sum of probabit

Pr{Uniquej;1 ATy =T] = Pr(T; = T)Pr|Unique;j1|T; =T
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over allj andT such thatT'| > max(r, v/ N) andT contains more than oriecollision. The probability of
the second case is a similar sum of probabilities

Pr[Nonej1 NT; =T) = Pr[T; = T|Pr[None;j1|T; =T).

Therefore, Pr{Unique;1|T; = T] > Pr[None;1|T; = T] + 0(N1/4) implies that the probability o
the second case is less than the probability of the first claseapterm of order—— Nl 17z times the numbel

of repetitions for the while loop. The number of repetitiaas) (k log V), becausdT | < %ﬁl(l +

ﬁ)ﬂﬂ < (1— 2)|T;|. Therefore, the probability of the second case is less theprobability of the first
case plus a term of ordet %) = o(1).

It remains to prove the lemma.
Proof: [of Lemma[4] We fix the permutations,, ..., 7;_; and letr; be chosen uniformly at random frol
the family of permutations given by Theoréin 2.

We consider two cases. The first case is wiienontains many:- coIIisions We show that, in this cas
the lemma is true because the probabilityNofne; 1 is small (of orden(— 173 )). The second case is'T;
contains fewk-collisions. In this case, we pick onesuch that there are at ledskelements, z; = x. We

compare the probabilities that
e T} 1 contains nadk-collisions;
e T4 contains exactly ong-collision, consisting of with z; = «.

The first event is the same &éone; 1, the second event impliegSnique;;. We prove the lemma b
showing that the probability of the second event is at ldastprobability of the first event minus a sm:
amount. This is proven by first conditioning @k, containing nadk-collisions consisting of with z; # «
and then comparing the probability that less thaof i : ; = = belong toT};,, with the probability that
exactlyk of i : x; = x belong toTlj .

Case 1.7} contains at leadbg N pairwise disjoint sets; = {i;1,...,i .} Withz;, | = ... = 2.
LetS = S;USy... U Sien. If event Nonej i occurs, at leastog N of mjm;_y...7m(i), i € S
(at least one from each of sefs, . .., S,z ;) Must belong to[[%qj] +1,...,q;}. By the next claim,

this probability is almost the same as the probability thae¢astlog N of klog N random elements qf;]
belong to{[%ﬂqﬂ +1,...,q}.

Claim 7 LetS C Ty, |S| < 2klog N. LetV C [¢;]1]. Letp be the probability thatr,m;_; ... (i))ics
belongs toV” and letp’ be the probability that a tuple consisting (@f| uniformly random elements ;]
belongs tal’. Then, ,
o< S

4qj
Proof: LetS" = {m;_1...m(¢)[i € S}. Then,p is the probability tha{r;(i));cs belongs toV. Let p”
be the probability thatvs, ..., v|g) belongs toV/, for (v1, ... ,vs) picked uniformly at random among a
tuples of| S| distinct elements ofy;;]. By Definition[2,|p — p”| < +.

It remains to boundp” — p'|. If (v1,...,vg)) is picked uniformly at random among tuples of distir
elements, every tuple 96| distinct elements has a probabili%'(qj_1).”1(%__'5'“) and the tuples of non
distinct elements have probability 0. (i1, . .., v|g)) is uniformly at random among all tuples, every tuy
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has probability-%:. Therefore,
9;

qj(qj_l)"'l(s?j_‘SHl)p”gp’gqj"'(qjlg,"SHl)p”Jr 1_qj---(qj|;|151+1) 7
q; 4

which implies

(=1 (g = 15]+1)

<Y ‘
' —p"[<1 5]

We have

(g — o o 151 2 2
1_%(% 1)'--(% ’S""l)gl_(% ‘S‘> §1_<1_ﬂ):ﬂ'

q;S | q; 4j 95

The probability that, out ok log N uniformly randomiy, ... ig1,en € {1,...,q;}, at leastlog N
belong to{ (%qﬂ +1,...,¢;} can be bounded using Chernoff bourids [33]. Kebe a random variabl
that is 1 ifi; € {[%ﬁlqﬂ +1,...,q;}. LetX = X1 + ... + Xp10g v. We need to boundPr[X > log N].

We haveE[X] = klog N - E[X1] = 5" log N — o(1) and

(k+1)/(2k+1) \ 108 V 1
€ _ _—0.316..1og N __
Pr[X >log N|] < <T) =e og _O(N1/4)’

with the first inequality following from Theorem 4.4 6fIB3P¢[X > (14 6)E[X]] < ((1++§1+5)E[X] for
X that is a sum of independent identically distributed O-lgdlrandom variables). By combining tr
bound with Clainil, the probability aVone;; is

1 (klogN)? +1 1
o () + n =0 ()

where we used; > |T;| > VN (otherwise, the algorithm finishes the while loop).
Case 2.7} contains less thalog N pairwise disjoint sets; = {i; 1, ..., i .} Withz;, , = ... = x5,
Let S be the set of all such thatz; is a part of a&-collision amongr;, i € T}.

Claim 8 |S| < 2klog N.

Proof: We first select a maximal collection of pairwise disjaffat This collection contains less thatog N
elements. It remains to prove that — U;S;| < klog N.

Since the collection{S;} is maximal, anyk-collision betweenz;, i € 7; must involve at least on
element fromy;S;. Therefore, for any, S \ U;S; contains at most — 1 valuesi with z; = z. Also, there
are less thatog IV possibler because any-collision must involve an element from one of s8isand there
are less thaitbg N setsS;. This means thatS — uU;S;| < (k—1)log N. |}

Let y1,y2,... be an enumeration of all distingt such that7); contains ak-collision iy, ..., i, with
xy = ... =z, = y. LetUniqueColl; be the event thal;,; contains exactly ong-collision iy, ..., i
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with z;, = ... = x;, = y, and NoColl; be the event thal;; contains no such collision. The eve
Nonej1 is the same ag,; NoColl;. The evenUnique;; is implied byUniqueColly A N\;~1 NoColl;.
Therefore, it suffices to show

N 2((2klog N)? + 1)
aj '

< Pr [UniqueColly N /\ NoColl;

>1

Pr [ A\ NoColl, (12)
l

The eventd/niqueColl; and NoColl; are equivalent to the cardinality of

. . . 2k
{Z:xi:yl,zGTjandﬂj...m(z) € {1,..., [2/{—}—1%—‘}}

being exactlyk and less thatk, respectively.

By Claim[3, the probabilities of botf\; NoColl; andUniqueColly A \;~, NoColl; change by at mos

% if we replace(r; ... m(i))ics by a tuple of|S| random elements df;;]. Then, the event:

NoColl; andUniqueColl; are independent of evendoColl; andUniqueColly for I’ # 1. Therefore,

Pr l/\ NOCO”I} = Pr[NoColl;] H Pr[{NoCollj],
l >1

Pr |UniqueColly N /\ NoColl,

>1

= Pr[UniqueColl;] H Pr[NoColl].

>1

This means that, to shoW{|12) for the actual probabilityriigtion (; ... 71 ());cs, it suffices to prove
Pr{UniqueColly] > Pr[NoColl;] for tuples consisting ofS| random elements.

Let be the setof all € T); suchthat:; = y;. Letm = |I|. Notice thain > k (by definition ofz andr).
Let P, be the event that exactlyof 7; ... 7w (i), ¢ € I belong toTj,1. Then,Pr{UniqueColl,| = Pr[P;]
and Pr[NoColl;| = Zf;ol Pr[P]. Whenr; ... m (i), ¢ € I are replaced by random elements/@f;, we

have z z
m 1 1 m=
PT[P’]_<Z><1_21¢+1) (2k+1) !

prip] (7)) 1 1 I+1 1

PriPa] () 2k+1 1- 5y m—1 2k

Forl < k— 1, we havelth L < kL = 1 This impliesPr[P] < s Pr[P;] and

k-1 k—1 1
> Pr(p] < (Z W) Pr(Py] < Pr(Py]
1=0 1=0

which is equivalent t&°r[NoColl;] < Pr{UniqueColl;]. [ |
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6 Running time and other issues

6.1 Comparison model

Our algorithm can be adapted to the model of comparison egisimilarly to the algorithm of[14]. Instea
of having the register ;cs|x;), we have a registgyi, jo, . . ., j) where|j;) is the index of thét™ smallest
element in the set. Given such register ange [N], we can add, to |51, ..., j.) by binary search whict
takesO(log N*/(#t1)) = O(log N)) queries. We can also remove a giver [N] in O(log N) queries by
reversing this process. This gives an algorithm wativ*/(*+1) Jog N') queries.

6.2 Running time

So far, we have shown that our algorithm solves elerkedlistinctness withO(N*/(++1)) queries. In this
section, we consider the actual running time of our algorifavhen non-query transformations are tak
into account).

Overview. All that we do between queries is Grover’s diffusion operatbich can be implemented i
O(log N') quantum time and some data structure operations a$i §et example, insertions and deletion:

We now show how to storé in a classical data structure which supports the necesgarations
in O(log*(N + M)) time. In a sufficiently powerful quantum model, it is possilib transform thes
O(log*(N + M)) time classical operations int@(log®(N + M)) step quantum computation. Then,
quantum algorithm runs i@ (N*/(:+1) 16g¢(N + M)) steps. We will first show this for the standard qu
model and then describe how the implementation should béfiedbr it to work in the comparison mode

Required operations. To implement algorithnil2, we need the following operations:
1. Addingy to S and storinge,, (step2 of algorithnill);
2. Removingy from S and erasing:,, (step® of algorithnil1);

3. Checking ifS containsiy, ..., ik, z;, = ... = z;, (to perform the conditional phase flip in s{ep 3a
algorithm[2);

4. Diffusion transforms ofw) register in stepSl1 ard 4 of algoritfidh 1.

Additional requirements. Making a data structure part of quantum algorithm createssitle issues
First, there is the uniqueness problem. In many classidal stauctures, the same sgtcan be stored ir
many equivalent ways, depending on the order in which elésneare added and removed. In the quant
case, this would mean that the basis stateis replaced by many stat¢s!), |S?), ... which in addition to
S store some information about the previous sets. This caa aaery bad result. In the original quantt
algorithm, we might havex|.S) interfering with—«/|S), resulting in 0 amplitude fofS). If «|S) — «|S)
becomesy|S!) — a|S?), there is no interference betweg#t) and|S?2) and the result of the algorithm wi
be different.

To avoid this problem, we need a data structure where the satfeC [N] is always stored in the sarr
way, independent of how was created.

Second, if we use a classical subroutine, it must termimagefixed timet. Only then, we can replac
it by an O(poly(t)) time quantum algorithm. The subroutines that take tinoa average (but might tak
longer time sometimes) are not acceptable.
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level 2 > — 0
level 1 > > > ——>» 0
level O > » > > > 0

Figure 1: A skip list with 3 levels

Model. To implement our algorithm, we use standard quantum cirooitel, augmented with gates f
random access to a quantum memory. A random access gatehtedemputs]i), |b) and|z), with b being
a single qubitz being anm-qubit register and € [m]. It then implements the mapping

‘7;, b, Z> — ‘7;, Ziy R1 e e Zi_lbzi+1 e zm>.

Random access gates are not commonly used in quantum laigsHitut are necessary in our case beca
otherwise, simple data structure operations (for exametapvingy from S) which requireO(log V) time
classically would requir€)(r) time quantumly.

In addition to random access gates, we allow the standardmmhévo qubit gates [9].

Data structure:overview. Our data structure is a combination of a hash table and aiskipVe use the
hash table to store pai(s, ;) in the memory and to access them when we need tadjridr a giveni. We
use the skip list to keep the items sorted in the order of agirgx; so that, when a new elemeiis added
to S, we can quickly check if; is equal to any ok, j € S.

We also maintain a variable counting the number of different € [AM] such that the se$ contains
il,...,’ikWithxil =... =T =2

Data structure:hash table. Our hash table consists efbuckets, each of which contains memory
[log N'| entries. Each entry usé¥log® N +log M) qubits. The total memory is, thu®,(r log(N + M)),
slightly more than in the case when we were only concernedtahe number of queries.

We hash{1,..., N} to ther buckets using a fixed hash functiéii) = |i - /N | + 1. The;" bucket
stores pairgi, x;) for i € S such that.(i) = j, in the order of increasing

In the case if there are more th@ling N'| entries witha (i) = j, the bucket only storedog N of them.
This means that our data structure misfunctions. We willskiwat the probability of that happening
small.

Besides thelog IV| entries, each bucket also contains memory for stdriagr | countersiy, . .., d|jog |
The counteid; in the j*" bucket counts the number ofc S such thath(i) = j. The counted;, [ > 1 is
only used ifj is divisible by2!. Then, it counts the number ofc S such thatj — 2! + 1 < h(3) < j.

The entry for(i, z;) contains(i, z;), together with a memory foflog N'| + 1 pointers to other entrie
that are used to set up a skip list (described below).

Data structure:skip list. In a skip list [3%], eacli € S has a randomly assigned levebetween 0 anc
lmaz = [log N'|. The skip list consists of,,,. + 1 lists, from the level-0 list to the levél,, list. The
leveld list contains alli € S with [; > . Each element of the levéllevel list has a level-pointer pointing
to the next element of the levélist (or O if there is no next element). The skip list also uses additional
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“start” entry. This entry does not store afyzx;) but had,,.., + 1 pointers, with the level-pointer pointing
to the first element of the levélkist. An example is shown in figuid 1.

In our case, each list is in the order of increasing(If several: have the same;, they are ordered b
1.) Instead of storing an adress for a memory location, psrgtore the value of the next elemeént S.
Giveni, we can find the entry fofi, z;) by computingh (i) and searching thi(:)'" bucket.

Givenz, we can search the skip list as follows:

1. Traverse the levdl;,. list until we find the last elemerit

mazx

with z;, <.

2. ForeacH =l 00 — 1, lnaz — 2, ..., 0, traverse the levelist, starting at;, until the last elemen
7; with T < .

The result of the last stageig, the last element of the level-0 list (which containsiadl .S) with z;, < z. If
we are given andx;, a similar search can find the last elemgnivhich satisfies either;, < z; orz;, = z;
andigp < 4. This is the element which would precedéf i was inserted into the skip list.

It remains to specify the levels. The levell; is assigned to each € [N] before the beginning o
the computation and does not change during the computatios.equal toj with probability 1/27+1 for
§ < lmaz @nd probabilityl /2'ma= for j = l,4,.

The straightforward implementation (in which we chose theel independently for each) has the
drawback that we have to store the level for eaciVaiossiblei € [N] which require€2(V) time to choose
the levels and2(/V) space to store them. To avoid this problem, we define thedew@hgl,,,.,. functions
hi,hay ... by, . [N] — {0,1}. i € [N] belongs to level (for | < l4,) if R1(i) = ... = (i) = 1
but hj41(i) = 0. i € [N] belongs to level,,q, if h1(i) = ... = h,,,, (i) = 1. Each hash functior
is picked uniformly at random from é@wise independent family of hash functions (Theofdm 1),dfet
[4logy N + 1].

In the quantum case, we augment the quantum state by an egister holdinghy, ..., Ay, . ). The
register is initialized to a superposition in which evergisastateh, ..., h;,,,.) has an equal amplitude
The register is then used to perform transformations deps#rwhh,,. .., i, on other registers.

Operations: insertion and deletion.To addi to S, we first query the value;. Then, we computé(7)
and add(i, 2;) to theh(i)™ bucket. If the bucket already contains some entries, we naersome of then
so that, after insertingi, ;), the entries are still in the order of increasing/NVe then add 1 to the counts
dy for the h(i)™ bucket and the countel; for the ((%121)“1 bucket, for eacti € {2,...,|logr]|}. We
then update the skip list:

1. Run the search for the last element befofas described earlier). The search finds the last eleipe
beforei on each level € {0,.. .l }-

2. For each level € {0,...,1;}, letj; be the level- pointer ofi;. Set the level-pointer ofi to be equal
to j; and the level-pointer ofi; to be equal ta.

After the update is complete, we use the skip list to find thallst;j such thatr; = z; and then use
level-0 pointers to count if the number ¢f: z; = z; is less thark, exactlyk or more thark. If there are
exactlyk suchj, we increase by 1. (In this case, before addirido S, there werek — 1 suchj and, after
addings, there aré: suchj. Thus, the number of such thatS containsiy, ...,y withz;, = ... =2;, ==
has increased by 1.)
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An elementi can be deleted fron§ by running this procedure in reverse.
Operations: checking for k-collisions. To check fork-collisions in setS, we just check ifv > 0.

Operations: diffusion transform. As shown by Grover[26], the following transformation fn, .. .,
|n)y can be implemented wit@(log n) elementary gates:

= (142l + X i, (13)

i'€ln)i'#i

To implement our transformation in the stgp 4 of Algorithinwie need to implement a 1-1 mappirfg
between betweel and{1,...,|S|}. Once we have such mapping, we can carry out the transfam
ly) — |f(y)) by [)]0) — |9)|f(v)) — |0)|f(y)) where the first step is a calculation Hfy) from y and
the second step is the reverse of a calculation fodbm f(y). Then, we perform the transformatidn]13)
1), ...,]|S|) and then apply the transformatiofi(y)) — |y), mapping{1,...,|S|} back toS.

The mappingf can be defined as followsf:(y) = fi(y) + f2(y) where f,(y) is the number of item:
i € S that are mapped to buckefsj < h(y) and f>(y) is the number of itemg’ < y that are mappec
to bucketh(y). Itis easy to see that is 1-1 mapping fromS to {1,...,|S|}. f2(y) can be computed b
counting the number of items in buckety) in time O(log N). fi(y) can be computed as follows:

1. Leti=0,1{= |logr|,s=0.
2. Whilel > 0 repeat:

(@) Ifi+ 2! <y, addd; from the (i 4 2')*® bucket tos; leti = 4 + 2/;
(b) Letl = — 1:

3. Returns as fi(y);

The transformation in stdd 1 of algoritith 1 is implementesing a similar 1-1 mapping between
betweenN]\ S and{1,...,N —|S|}.

Uniqueness.lt is easy to see that a sgtis always stored in the same way. The valuessS are always
hashed to buckets byin the same way and, in each bucket, the entries are locathd order of increasing
1. The counters counting the number of entries in the bucketsigquely determined by. The structure
of the skip list is also uniquely determined, once the furgi.,, ..., h;, ., are fixed.

Guaranteed running time. We show that, for anys, the probability that lookup, insertion or deletic
of some element takes more th@tlog* (N + M)) steps is very small. We then modify the algorithr
for lookup, insertion or deletion so that they abort aftésg*(N + M) steps and show that this has
significant effect on the entire quantum search algorithrorévprecisely, let

|¢t> = Z OétS,y|¢S,h1,...,hlmax>|y>|h1’ AR hlmaac>

S,y,h1,...7

hlmaz

be the state of the quantum algorithm aftesteps (each step being the quantum translation of one
structure operation), using quantum translations of thiéepedata structure operations (which do not f
but may take more thaslog* N steps). Herelys p,....n,,,. ) stands for the basis state corresponding to
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data structure storing andz;, ¢ € .S, using the hash functiorfs,, ..., h;, ... (Notice that the amplitude

afg’y is independent ok, ..., Ay, ., Sincehq, ..., k. all are equally likely.)
We decomposéy) = [4p°°% + |ypbed), with [19°°Y) consisting of(S, ks, ..., hy,...) for which the
next operation successfully completescilog? (N + M) steps andy?*?) consisting of(S, hy, ..., h,..)

for which the next operation fails to completedivg? (N 4 M) steps. Let:;) be the state of the quantu
algorithm aftert steps using the imperfect data structure algorithms whiai abort. The next lemma is ¢
adaptation of “hybrid argument” by Bennett et al.1[11] to context.

Lemma5
t
bad
e — il < D 20l
t'=1

Proof: By induction. It suffices to show that

e =l < e = Wyl + 20

To show that, we introduce an intermediate state) which is obtained by applying the perfect trar
formations in the first — 1 steps and the transformation which may fail in the last stéen,

19 — il < llvbe — 7'l + [l — il

The second termj|y; — || is the same a§y,—1 — ;| because the statés;’) and|:;) are obtained
by applying the same unitary transformation (quantum teios of a data structure transformation whi
may fail) to stategy,_1) and|y;_,), respectively. To bound the first terffyy, — «/||, let U, andU; be the
unitary transformations corresponding to perfect and ifiepe version of the'" data structure operatior
Then,|¢:) = Up|¢y—1) and|y;) = U;|y—1). SinceU, andU; only differ for (S, hq, ..., hy,,,.) for which

the data structure operation does not finishliog* N steps, we have

e = will = 1Uplthe-1) = Uilte—1)ll = 10 [429) — Usle2)l < 201924

|
Lemma 6 For everyt, ||1//*¢|| = O(wts).
Proof: We assume that there is exactly dneollision z;, = ... = z;,. (If there is nok-collisions, the

checking step at the end of algoritih 2 ensures that the arisveerrect. The case with more than o
k-collision reduces to the case with exactly dneollision because of the analysis in seclidn 5.)

By Lemmall, every basis stat§, =) of the same type has equal amplitude. Also,/all..., Ay, ..,
have equal probabilities. Therefore, it suffices to show, tfa any fixeds = |S N {i1,...,i}| and
t = |{z} N {i1, ..., ix}|, the fraction ofl S, z, hi, ..., hy,,,.) for which the operation fails is at mogk;.

There are two parts of the update operation which can fail:

1. Hash table can overflow if more thalog V| elements € S have the samé(i) = h;

2. Update or lookup in the skip list can take more thasg* N steps.
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For the first part, les = [S N {i1,...,i}]. If more than[log N'| elementsi € S haveh(i) = j,
then at leasflog N| — s of them must belong t@V] \ {i1,...,it}. We now show that, for a random s
S CINJ\{i1,... i}, |S| = r — s the probability that more thaflog N| — s of i € S satisfyh(i) = jis
small.

We introduce random variables;, ..., X,_, with X; = 1 if h maps the'™® element ofS to j. We
need to boundY = X7 + ... + X,_,. We have]\%if < ElX] < ]{[sz which means thab'[X;| =

% + O(%). (Here, we are assuming thatis a constant.s is also a constant because< k.) Therefore,
EX]=(r—s)E[X)]=1+0(1).

The random variableX; are negatively correlated: if one or moreXfis equal to 1, then the probabilit
that other variables(;; are equal to 1 decreases. Therefare [34], we can apply Ciidounds to bound

Pr[X > log N — s]. By using the bound’r[X > (1 + 0)E[X]] < (ﬁ)mx] [33,32], we get
elogN—s—l 1
PriX >log N — —o 1),
r[X > log s < (og N — s)lEN— 0(N4>

For the second part, we consider the time required for ilmsedf a new element. (Removing an eleme
requires the same time, because it is done by running thaisrsalgorithm in reverse.) Adding, x;) to
the (h(7))t" bucket requires comparingio entries already in the bucket and, possibly, moving softleeo
entries so that they remain sorted in the order of increasignce a bucket contair@(log V) entries and
each entry usdeg? (N + M) bits, this can be done ift (log® (N + M)) time. Updating counterg; requires
O(log N) time, for each oD (log r) = O(log N) counters.

To update the skip list, we first need to comptigi), .. ., hy,,,. (). This is the most time-consumin
step, requiringD(dlog® N) = O(log® N) steps for each of,,., = [log N7 functionsh;. The total time
for this step isO(log? N). We then need to update the pointers in the skip list. We shaty tor any fixed
S,y (and randomhy, ..., hy, ..), the probability that updating the pointers in the skip takes more thar
clog* N steps, is small.

Each time when we access a pointer in the skip list, it may tKeg? V) steps, because a point
stores the numberof the next entry and, to find the entfy, x;) itself, we have to computk(i) and searck
the h(7)* bucket which may contaiibg N entries, each of which usésg N bits to storei. Therefore, it
suffices to show that the probability of a skip list operatimeessing more tharlog? N pointers is small.

We do that by proving that at mogt= 4log N + 1 pointer accesses are needed on eadhglV + 1
levelsi. We first consider level 0. Lef, jo, ... be the elements of ordered so that;, < z;, < zj,...
(and, ifz; = z;,, for somej, thenj, < j;41). If the algorithm requires more thahpointer accesse
on level 0, it must be the case that, for soihej;, ..., jiy1q_1 are all at level 0. That is equivalent 1
hi(4s) = h1(Jir+1) = ... = h1(Jirra—1) = 0. Sinceh, is d-wise independent, the probability th
hl(ji/) =...= hl(ji’+d71) =0is2 % < N4,

For levell (0 < I < Ilnaz), We first fix the hash functions,, ..., h;. Let j1,j2,... be the element:
of S for which hy, ..., hy are all 1, ordered so that;, < z;, < zj,.... By the same argument, tt
probability that the algorithm needsor more pointer accesses on lelé the same as the probability th
hii1(Gir) = ... = hiy1(jirrqa—1) = 0 for somei’ and this probability is at most—¢ < N—*. For level
lmaz, We fix hash functiong,, ..., h;, . 1 and notice that is on levell,,,, whenever,; (i) = 1. The
rest of the argument is as before, with, .. (j+) = hi,,,. Gir+1) = ... = i, (Jir+d—1) = 1 instead of

h1(jir) = P1(jir+1) = - .. = hi(Jirya—1) = 0.
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Since there artbg N + 1 levels and- elements of5, the probability that the algorithm spends more tt
k — 1 steps on one level for some elementSofs at mos@(%g—]v) = O(55)-

Therefore|[¢{?||? = O(5) and ||| = O(5+s), proving the lemma. i

By Lemmag¢b anfl6, the distance between the final states afeéhkalgorithm (where the data structur

never fail) and the actual algorithm is of orde(z) = O(ﬁ). This also means that the probabili

distributions obtained by measuring the two states difjeaibmostO(ﬁ), in variational distance_[13]

Therefore, the imperfectness of the data structure opasatioes not have a significant effect.
Implementation in comparison model. The implementation in comparison model is similar, exc

that the hash table only storesmstead of(i, x;).

7 Open problems

1. Time-space tradeoffs.Our optimalO(N?/3)-query algorithm requires space to stareN?/3) items.

How many queries do we need if algorithm’s memory is regddbr items? Our algorithm need

O(%) queries and this is the best known. Curiously, the lower ddondeterministic algorithms ir

comparison query model @(NTQ) queries [[38] which is quadratically more. This suggests tha
algorithm might be optimal in this setting as well. Howevigie only lower bound is th@(N?/3)
lower bound for algorithms with unrestricted memdriy [1].

2. Optimality of k-distinctness algorithm. While element distinctness is known to requi?éN?/3)
queries, it is open whether o(Dr(N’“/(’f“)) query algorithm fork-distinctness is optimal.

The best lower bound fde-distinctness isQ(NQ/?’), by a following argument. We take an instance
element distinctness , . .., x5 and transform it intd:-distinctness by repeating every elemént 1
times. Ifzq,...,zx are all distinct, there is né equal elements. If there aigj such thatr; = x;
among originalNV elements, then repeating each of them 1 times create@k — 2 equal elements
Therefore, solving:-distinctness orfk — 1) N elements requires at least the same number of qu
as solving distinctness aN elements (which requiré@(N?/?) queries).

3. Quantum walks on other graphs. A quantum walk search algorithm based on similar ideas
be used for Grover search on grid$[[8] 22]. What other graphsggaantum-walks based algorithr
search? Is there a graph-theoretic property that detesnifigeiantum walk algorithms work well of
this graph?

[B] and [37] have shown that, for a class of graphs, the perdmice of quantum walk depends
certain expressions consisting of graph’s eigenvaluegaiticular, if a graph has a large eigenval
gap, quantum walk search performs wElll[37]. A large eighrvgap is, however, not necessary,
shown by quantum search algorithms for gridd 18, 37].

Acknowledgments. Thanks to Scott Aaronson for showing thatistinctness is at least as hard
distinctness (remark 2 in secti@h 7), to Robert Beals, Gragefberg and Samuel Kutin for pointing o
the “uniqueness” problem in sectibh 6 and to Boaz Barak, A&ndchilds, Daniel Gottesman, Julia Kemg
Samuel Kutin, Frederic Magniez, Oded Regev, Mario Szegtathagat Tulsi and anonymous referees
comments and discussions.
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