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Abstract
  

A palindrome is a string of symbols that is 
read the same forward and backward. 
Palindrome also occurs in DNA. DNA 
palindromes appear frequently and are 
widespread in human cancers. Identifying them 
could help advance the understanding of 
genomic instability [2, 6]. The Palindrome 
subsequences detection problem is therefore an 
important issue in computational biology.  In 
this paper, we present an algorithm to find all 
palindrome subsequences. 
 
1. Introduction 

 
In this paper, the following notations are 

used.  A string is a sequence of symbols from 
an alphabet set .  For a string S = s� 1s2…sn of 
length n, let si denote the ith symbol in S.  A 
subsequence of S is obtained by deleting zero or 
more (not necessarily consecutive) symbols form 
S. 
 

A palindrome is a string of the form wwR 
where w is a non-empty substring and wR is the 
reverse of w. For example, TT and GCAACG 
are palindromes.  There are many various 
classic computing problems in finding 
palindromes of a string.  For example, 
Manacher discovered an on-line sequential 
algorithm that finds all initial palindromes in a 
string [4].  Porto and Barbosa gave an 
algorithm to find long approximate palindromes 
[5]. 

 
Given a string S, a subsequence P is a 

palindrome subsequence of S if P is a 
palindrome.  Taking a string S = ACGATGTAC 
as an example, a palindrome subsequence of S is 

ATTA. In computational molecular biology, 
finding out the palindrome subsequences in 
DNA sequence is an important issue [3]. 
However, as far as we know, there is no article 
discussing about how to detect all palindrome 
subsequences. In this paper, we proposed an 
effective algorithm to solve the palindrome 
subsequence problem.   

 
2. The Method 

 
To begin with, we introduce an idea from 

the properties of palindrome.  Let P = p1p2…pm 
be a palindrome.  If P is a palindrome, p1 is 
matched with pm and p2 is matched with pm-1 and 
so forth.  For example, given a palindrome P = 
ATTA, p1 is matched with p4 and p2 is matched 
p3 (Figure 1).  Palindrome subsequences also 
have the same property of palindrome, because 
palindrome subsequences are palindromes. 

 

Figure 1 

 
Let matched pair, (i, j), to denote that si is 

matched with sj where nji ���1  and we 
define k-palindrome subsequence to be a 
palindrome subsequence which has k matched 
pairs of S.  We use the notation (i1, j1) (i2, j2) … 
(ik, jk) to denote k-palindrome subsequence 
where njjjiii kk �������� 1221 ......1 . 
Given a string S = ACGATGTAC, AGGA is one 
of all palindrome subsequences of S. The 
matched pairs of AGGA are (1, 8) and (3, 6) 
(Figure 2).  It is a 2-palindrome subsequence 
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which is denoted as (1, 8) (3, 6). 

 

Figure 2 

 
The k-palindrome subsequence has one 

property which is that the k-palindrome 
subsequence is based up on k-1-palindrome 
subsequence and 1-palindrome subsequence.  
Let k-1-palindrome be (i1, j1) … (ik-1, jk-1) and 
1-palindrome subsequence be (i’, j’).  The 
k-palindrome subsequence, (i1, j1) … (ik-1, jk-1) (i’, 
j’), can be found from k-1-palindrome 
subsequence and 1-palindrome subsequence, if 
the i’ > ik-1 and j’ < jk-1.  For example, given a 
string S = ACGATGTAC then CC, CAAC and 
CATTAC are palindrome subsequences of S. CC 
is a 1-palindrome subsequence denoted (2, 9) 
(Figure 3(a)), AA is also a 1-palindrome 
subsequence denoted (4, 8) and TT is also a 
1-pailindrome subsequence denoted (5, 7).  
CAAC is a 2-palindrome subsequence denoted 
(2, 9) (4, 8) which is based upon 1-palindrome 
subsequence (Figure 3(b)). CATTAC is a 
3-palindrome subsequence denoted (2, 9) (4, 8) 
(5, 7) which is based upon 2-palindrome 
subsequence and 1-palindrome subsequence. 

 

(a) The matched pair of CC 

 

(b) The matched pairs of 

CAAC

 
(c) The matched pairs of CATTAC 

Figure 3 

 
According to the above property of 

k-palindrome subsequence, we can use it to find 
all palindrome subsequences.  For example, 
given a string S = ACGATGTAC, we can use it 
to find all palindrome subsequences of S as 
follows: 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9
A C G A T G T A C 

First, we find all matched pairs of S and 
each matched pair is a 1-palindrome 
subsequence. 
 
(1, 4) AA 
(1, 8) AA 
(2, 9) CC 
(3, 6) GG 
(4, 8) AA 
(5, 7) TT 
 

After all 1-palindrome subsequences of S 
are found, we can find all 2-palindrome 
subsequences based upon them. 
 
(1, 8) (3, 6) AGGA 
(1, 8) (5, 7) ATTA 
(2, 9) (3, 6) CGGC 
(2, 9) (4, 8) CAAC 
(2, 9) (5, 7) CTTC 
(4, 8) (5, 7) ATTA 
 

After finding all 2-palindrome 
subsequences, we can find all 3-palindrome 
subsequences based upon 2-palindrome 
subsequence and 1-palindrome subsequence. 
 
(2, 9) (4, 8) (5, 7) CATTAC 
  

The recursive process continues until all 
palindrome subsequence are found out. 
 
 
3. The Algorithm 

 
We proposed an algorithm to solve the 
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finding all palindrome subsequences problem.  
In this algorithm, we find all palindrome 
subsequences form one palindrome subsequence 
to the longest palindrome subsequence.  Given 
a string S of length n, let Uk be the set of 
k-palindrome where

2Step 1: We use incidence matrix to find all 
matched pairs (i, j) where 

1 n
.  k ��

nji ���1  and 
add them into U1, because each matched pair is 
1-palindrome subsequence. 

Step 2: We generate U k from Uk-1 and U1 
where 

2
n

.  For all k-1-palindrome 
subsequences in U

1 k ��
k-1, we take a k-1-palindrome 

subsequence (i1, j1) … (ik-1, jk-1) form Uk-1 and we 
check all 1-palindromes from U1 whether there 
is a 1-palindrome (i’, j’) which satisfies the rule 
i’ > ik-1 and j’ < jk-1.  If it is satisfied, we 
combine the k-1-palindrome (i1, j1) … (ik-1, jk-1) 
with the 1-palindrome (i’, j’) to be k-palindrome 
(i1, j1) … (ik-1, jk-1) (i’, j’) and add it into the set 
Uk. Until the Un/2 is generated, we can get the set 
U = U1  U� 2 … U� � n/2 which contains all 
palindrome subsequences of S. 

 
In the following, we present the algorithm 

for finding all palindrome subsequences. 
 

Algorithm  findAllPalindromeSubsequences(S) 

Input: A string S = s1s2…sn. 

Output: All palindrome subsequences of S.

Step 1:  

/* Finding out matched pair for nji ���1  

*/ 

U1 := {} 

for i = 1 to n do 

 for j = i +1 to n do 

  if si = sj then 

w := (i, j) 

   U1 := U1  {w} �

 endfor

endfor

Step 2:  

/* Finding all palindrome subsequences of S */ 

for k = 2 to n/2 do 

Uk := {} 

for all k-1-palindrome (i1, j1) … (ik-1, jk-1) from 

Uk-1 do 

for all 1-palindrome (i’, j’) from U1 do 

if i’ > ik-1 and j’ < jk-1 then

ik := i’ 

jk := j’

w := (i1, j1) … (ik-1, jk-1) (ik, jk) 

Uk := Uk  {w} �

endif

endfor

endfor

endfor

U := U1� U2�…� Un/2

/* U is the set of all palindrome subsequences of 

S */

 

4. An Example 

 
Given a string S = ACGATGTAC, We now 

illustrate the whole procedure in detail. 
S1 S2 S3 S4 S5 S6 S7 S8 S9
A C G A T G T A C 

Step 1: We use incidence matrix to find all 
matched pairs (i, j) where . nji ���1
Table 1 The incidence matrix for this string S = 

ACGATGTAC 

Sj 1 2 3 4 5 6 7 8 9

Si  A C G A T G T A C

1 A  0 0 1 0 0 0 1 0

2 C   0 0 0 0 0 0 1

3 G    0 0 1 0 0 0

4 A     0 0 0 1 0

5 T      0 1 0 0

6 G       0 0 0

7 T        0 0

8 A         0

9 C          

 
After the incidence matrix is generated, we 

can get the U1. 
U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), (5, 7)} 
 
Step 2: 
(1) k = 2, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), 
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(5, 7)}, U2 = {} 
(1-1) 

We take the 1-palindrome subsequence (1, 4) 
from U1. 
For all 1-palindrome subsequences from U1, 
there is no 1-palindrome subsequence  (i’, j’) 
which satisfies that i’ > 1 and j’ < 4. 
U2 = {} 

(1-2) 
We take the 1-palindrome subsequence (1, 8) 
from U1. 
For all 1-palindrome subsequences from U1, 
there is a 1-palindrome subsequence (3, 6) 
which satisfies that 3 > 1 and 6 < 8. We 
combine (1, 8) with (3, 6) to be 2-palindrome 
subsequence (1, 8) (3, 6) and add it into the 
set U2. 
U2 = {(1, 8) (3, 6)} 
There is another 1-palindrome subsequence 
(5, 7) which can satisfy that 5 > 1 and 7 < 8. 
We combine (1, 8) with (5, 7) to be 
2-palindrome subsequence (1, 8) (5, 7) and 
add it into the set U2. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7)} 
There is no 1-palindrome subsequence which 
can be satisfied. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7)} 

(1-3) 
We take the 1-palindrome subsequence (2, 9) 
from U1. 
There is a 1-palindrome subsequence (3, 6) 
which can be satisfied. We combine (2, 9) 
with (3, 6) to be 2-palindrome subsequence (2, 
9) (3, 6) and add it into the set U2. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6)} 
There is another 1-palindrome subsequence 
(4, 8) which can be satisfied. We combine (2, 
9) with (4, 8) to be 2-palindrome subsequence 
(2, 9) (4, 8) and add it into the set U2. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 
(2, 9) (4, 8)} 
There is another 1-palindrome subsequence 
(5, 7) which can be satisfied. We combine (2, 
9) with (5, 7) to be 2-palindrome subsequence 
(2, 9) (5, 7) and add it into the set U2. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 
(2, 9) (4, 8), (2, 9) (5, 7)} 
There is no 1-palindrome subsequence which 
can be satisfied. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 
(2, 9) (4, 8), (2, 9) (5, 7)} 

(1-4) 
We take the 1-palindrome subsequence (3, 6) 
from U1. 
Check all 1-palindromes from U1.  
There is no 1-palindrome which can be 
satisfied. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 

(2, 9) (4, 8), (2, 9) (5, 7)} 
(1-5) 

We take the 1-palindrome (4, 8) from U1. 
Check all 1-palindromes from U1.  
There is a 1-palindrome (5, 7) which can be 
satisfied. We combine (4, 8) with (5, 7) to be 
2-palindrome (4, 8) (5, 7) and add it into the 
set U2. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 
(2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)} 
There is no 1-palindrome which can be 
satisfied. 
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), 
(2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)} 

(1-6) 
We take the 1-palindrome (5, 7) from U1. 
Check all 1-palindromes from U1.  
There is no 1-palindrome which can be 
satisfied. 

 
(2) k = 3, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), 
(5, 7)}, U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 
6), (2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}, U3 = 
{} 
(2-1) 

We take the 2-palindrome (1, 8) (3, 6) from 
U2. 
Check all 1-palindrome from U1. 
There is no 1-palindrome which can be 
satisfied. 
U3 = {} 

(2-2) 
We take the 2-palindrome (1, 8) (5, 7) from 
U2. 
Check all 1-palindrome from U1. 
There is no 1-palindrome which can be 
satisfied. 
U3 = {} 

(2-3) 
We take the 2-palindrome (2, 9) (3, 6) from 
U2. 
Check all 1-palindrome from U1. 
There is no 1-palindrome which can be 
satisfied. 
U3 = {} 

(2-4) 
We take the 2-palindrome (2, 9) (4, 8) from 
U2. 
Check all 1-palindrome from U1. 
There is a 1-palindrome (5, 7) which can be 
satisfied. We combine (2, 9) (4, 8) with (5, 7) 
to be 3-palindrome (2, 9) (4, 8) (5, 7) and add 
it into the set U3. 
U3 = {(2, 9) (4, 8) (5, 7)} 

(2-5) 
We take the 2-palindrome (2, 9) (5, 7) from 
U2. 
Check all 1-palindrome from U1. 
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There is no 1-palindrome which can be 
satisfied. 
U3 = {(2, 9) (4, 8) (5, 7)} 

(2-6) 
We take the 2-palindrome (4, 8) (5, 7) from 
U2. 
Check all 1-palindrome from U1. 
There is no 1-palindrome which can be 
satisfied. 

 
(3) k = 4, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), 
(5, 7)}, U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 
6), (2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}, U3 = 
{(2, 9) (4, 8) (5, 7)}, U4 = {} 
(3-1) 

We take the 3-palindrome (2, 9) (4, 8) (5, 7) 
from U3. 
Check all 1-palindrome from U1. 
There is no 1-palindrome which can be 
satisfied. 
U4 = {} 

 
Finally, we get the set U = U1  U� 2 

…� U� n/2 which contains all palindrome 
subsequences of S. 
U = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), (5, 7), (1, 
8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), (2, 9) (4, 8), 
(2, 9) (5, 7), (4, 8) (5, 7), (2, 9) (4, 8) (5, 7)} 
 
The all palindrome subsequences of S are as 
follows: 
(1, 4) AA 
(1, 8) AA 
(2, 9) CC 
(3, 6) GG 
(4, 8) AA 
(5, 7) TT 
(1, 8) (3, 6) AGGA 
(1, 8) (5, 7) ACCA 
(2, 9) (3, 6) CGGC 
(2, 9) (4, 8) CAAC 
(2, 9) (5, 7) CTTC 
(4, 8) (5, 7) ATTA 
(2, 9) (4, 8) (5, 7) CATTAC 

5. Conclusions
 
In this paper, we proposed an algorithm to 

solve the finding all palindrome subsequences in 
a string.  Palindrome subsequences occur 
frequently in DNA sequences and have been 
proved to be critical for some biological 
characteristics.  Our algorithm provides an 
effective tool for the related research. 
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