
Finding all Palindrome Subsequences in a String

K.R. Chuang1, R.C.T. Lee2 and C.H. Huang3*
1,2 Department of Computer Science, National Chi-Nan University, Puli, Nantou

Hsieh, Taiwan 545
3 Department of Computer Science and Information Engineering, National Formosa

University, 64, Wen-Hwa Rod, Hu-wei, Yun-Lin, Taiwan 632
*Corresponding author: chhuang@sunws.nfu.edu.tw

Abstract

A palindrome is a string of symbols that is
read the same forward and backward.
Palindrome also occurs in DNA. DNA
palindromes appear frequently and are
widespread in human cancers. Identifying them
could help advance the understanding of
genomic instability [2, 6]. The Palindrome
subsequences detection problem is therefore an
important issue in computational biology. In
this paper, we present an algorithm to find all
palindrome subsequences.

1. Introduction

In this paper, the following notations are

used. A string is a sequence of symbols from
an alphabet set . For a string S = s� 1s2…sn of
length n, let si denote the ith symbol in S. A
subsequence of S is obtained by deleting zero or
more (not necessarily consecutive) symbols form
S.

A palindrome is a string of the form wwR
where w is a non-empty substring and wR is the
reverse of w. For example, TT and GCAACG
are palindromes. There are many various
classic computing problems in finding
palindromes of a string. For example,
Manacher discovered an on-line sequential
algorithm that finds all initial palindromes in a
string [4]. Porto and Barbosa gave an
algorithm to find long approximate palindromes
[5].

Given a string S, a subsequence P is a

palindrome subsequence of S if P is a
palindrome. Taking a string S = ACGATGTAC
as an example, a palindrome subsequence of S is

ATTA. In computational molecular biology,
finding out the palindrome subsequences in
DNA sequence is an important issue [3].
However, as far as we know, there is no article
discussing about how to detect all palindrome
subsequences. In this paper, we proposed an
effective algorithm to solve the palindrome
subsequence problem.

2. The Method

To begin with, we introduce an idea from

the properties of palindrome. Let P = p1p2…pm
be a palindrome. If P is a palindrome, p1 is
matched with pm and p2 is matched with pm-1 and
so forth. For example, given a palindrome P =
ATTA, p1 is matched with p4 and p2 is matched
p3 (Figure 1). Palindrome subsequences also
have the same property of palindrome, because
palindrome subsequences are palindromes.

Figure 1

Let matched pair, (i, j), to denote that si is

matched with sj where nji ���1 and we
define k-palindrome subsequence to be a
palindrome subsequence which has k matched
pairs of S. We use the notation (i1, j1) (i2, j2) …
(ik, jk) to denote k-palindrome subsequence
where njjjiii kk �������� 12211 .
Given a string S = ACGATGTAC, AGGA is one
of all palindrome subsequences of S. The
matched pairs of AGGA are (1, 8) and (3, 6)
(Figure 2). It is a 2-palindrome subsequence

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-371-

wufuh_000
Highlight

wufuh_000
Highlight

wufuh_000
Highlight

wufuh_000
Highlight

which is denoted as (1, 8) (3, 6).

Figure 2

The k-palindrome subsequence has one

property which is that the k-palindrome
subsequence is based up on k-1-palindrome
subsequence and 1-palindrome subsequence.
Let k-1-palindrome be (i1, j1) … (ik-1, jk-1) and
1-palindrome subsequence be (i’, j’). The
k-palindrome subsequence, (i1, j1) … (ik-1, jk-1) (i’,
j’), can be found from k-1-palindrome
subsequence and 1-palindrome subsequence, if
the i’ > ik-1 and j’ < jk-1. For example, given a
string S = ACGATGTAC then CC, CAAC and
CATTAC are palindrome subsequences of S. CC
is a 1-palindrome subsequence denoted (2, 9)
(Figure 3(a)), AA is also a 1-palindrome
subsequence denoted (4, 8) and TT is also a
1-pailindrome subsequence denoted (5, 7).
CAAC is a 2-palindrome subsequence denoted
(2, 9) (4, 8) which is based upon 1-palindrome
subsequence (Figure 3(b)). CATTAC is a
3-palindrome subsequence denoted (2, 9) (4, 8)
(5, 7) which is based upon 2-palindrome
subsequence and 1-palindrome subsequence.

(a) The matched pair of CC

(b) The matched pairs of

CAAC

(c) The matched pairs of CATTAC

Figure 3

According to the above property of

k-palindrome subsequence, we can use it to find
all palindrome subsequences. For example,
given a string S = ACGATGTAC, we can use it
to find all palindrome subsequences of S as
follows:

S1 S2 S3 S4 S5 S6 S7 S8 S9
A C G A T G T A C

First, we find all matched pairs of S and
each matched pair is a 1-palindrome
subsequence.

(1, 4) AA
(1, 8) AA
(2, 9) CC
(3, 6) GG
(4, 8) AA
(5, 7) TT

After all 1-palindrome subsequences of S
are found, we can find all 2-palindrome
subsequences based upon them.

(1, 8) (3, 6) AGGA
(1, 8) (5, 7) ATTA
(2, 9) (3, 6) CGGC
(2, 9) (4, 8) CAAC
(2, 9) (5, 7) CTTC
(4, 8) (5, 7) ATTA

After finding all 2-palindrome
subsequences, we can find all 3-palindrome
subsequences based upon 2-palindrome
subsequence and 1-palindrome subsequence.

(2, 9) (4, 8) (5, 7) CATTAC

The recursive process continues until all
palindrome subsequence are found out.

3. The Algorithm

We proposed an algorithm to solve the

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-372-

finding all palindrome subsequences problem.
In this algorithm, we find all palindrome
subsequences form one palindrome subsequence
to the longest palindrome subsequence. Given
a string S of length n, let Uk be the set of
k-palindrome where

2Step 1: We use incidence matrix to find all
matched pairs (i, j) where

1 n
. k ��

nji ���1 and
add them into U1, because each matched pair is
1-palindrome subsequence.

Step 2: We generate U k from Uk-1 and U1
where

2
n

. For all k-1-palindrome
subsequences in U

1 k ��
k-1, we take a k-1-palindrome

subsequence (i1, j1) … (ik-1, jk-1) form Uk-1 and we
check all 1-palindromes from U1 whether there
is a 1-palindrome (i’, j’) which satisfies the rule
i’ > ik-1 and j’ < jk-1. If it is satisfied, we
combine the k-1-palindrome (i1, j1) … (ik-1, jk-1)
with the 1-palindrome (i’, j’) to be k-palindrome
(i1, j1) … (ik-1, jk-1) (i’, j’) and add it into the set
Uk. Until the Un/2 is generated, we can get the set
U = U1 U� 2 … U� � n/2 which contains all
palindrome subsequences of S.

In the following, we present the algorithm

for finding all palindrome subsequences.

Algorithm findAllPalindromeSubsequences(S)

Input: A string S = s1s2…sn.

Output: All palindrome subsequences of S.

Step 1:

/* Finding out matched pair for nji ���1

*/

U1 := {}

for i = 1 to n do

 for j = i +1 to n do

 if si = sj then

w := (i, j)

 U1 := U1 {w} �

 endfor

endfor

Step 2:

/* Finding all palindrome subsequences of S */

for k = 2 to n/2 do

Uk := {}

for all k-1-palindrome (i1, j1) … (ik-1, jk-1) from

Uk-1 do

for all 1-palindrome (i’, j’) from U1 do

if i’ > ik-1 and j’ < jk-1 then

ik := i’

jk := j’

w := (i1, j1) … (ik-1, jk-1) (ik, jk)

Uk := Uk {w} �

endif

endfor

endfor

endfor

U := U1� U2�…� Un/2

/* U is the set of all palindrome subsequences of

S */

4. An Example

Given a string S = ACGATGTAC, We now

illustrate the whole procedure in detail.
S1 S2 S3 S4 S5 S6 S7 S8 S9
A C G A T G T A C

Step 1: We use incidence matrix to find all
matched pairs (i, j) where . nji ���1
Table 1 The incidence matrix for this string S =

ACGATGTAC

Sj 1 2 3 4 5 6 7 8 9

Si A C G A T G T A C

1 A 0 0 1 0 0 0 1 0

2 C 0 0 0 0 0 0 1

3 G 0 0 1 0 0 0

4 A 0 0 0 1 0

5 T 0 1 0 0

6 G 0 0 0

7 T 0 0

8 A 0

9 C

After the incidence matrix is generated, we

can get the U1.
U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), (5, 7)}

Step 2:
(1) k = 2, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8),

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-373-

wufuh_000
Highlight

wufuh_000
Highlight

(5, 7)}, U2 = {}
(1-1)

We take the 1-palindrome subsequence (1, 4)
from U1.
For all 1-palindrome subsequences from U1,
there is no 1-palindrome subsequence (i’, j’)
which satisfies that i’ > 1 and j’ < 4.
U2 = {}

(1-2)
We take the 1-palindrome subsequence (1, 8)
from U1.
For all 1-palindrome subsequences from U1,
there is a 1-palindrome subsequence (3, 6)
which satisfies that 3 > 1 and 6 < 8. We
combine (1, 8) with (3, 6) to be 2-palindrome
subsequence (1, 8) (3, 6) and add it into the
set U2.
U2 = {(1, 8) (3, 6)}
There is another 1-palindrome subsequence
(5, 7) which can satisfy that 5 > 1 and 7 < 8.
We combine (1, 8) with (5, 7) to be
2-palindrome subsequence (1, 8) (5, 7) and
add it into the set U2.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7)}
There is no 1-palindrome subsequence which
can be satisfied.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7)}

(1-3)
We take the 1-palindrome subsequence (2, 9)
from U1.
There is a 1-palindrome subsequence (3, 6)
which can be satisfied. We combine (2, 9)
with (3, 6) to be 2-palindrome subsequence (2,
9) (3, 6) and add it into the set U2.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6)}
There is another 1-palindrome subsequence
(4, 8) which can be satisfied. We combine (2,
9) with (4, 8) to be 2-palindrome subsequence
(2, 9) (4, 8) and add it into the set U2.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),
(2, 9) (4, 8)}
There is another 1-palindrome subsequence
(5, 7) which can be satisfied. We combine (2,
9) with (5, 7) to be 2-palindrome subsequence
(2, 9) (5, 7) and add it into the set U2.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),
(2, 9) (4, 8), (2, 9) (5, 7)}
There is no 1-palindrome subsequence which
can be satisfied.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),
(2, 9) (4, 8), (2, 9) (5, 7)}

(1-4)
We take the 1-palindrome subsequence (3, 6)
from U1.
Check all 1-palindromes from U1.
There is no 1-palindrome which can be
satisfied.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),

(2, 9) (4, 8), (2, 9) (5, 7)}
(1-5)

We take the 1-palindrome (4, 8) from U1.
Check all 1-palindromes from U1.
There is a 1-palindrome (5, 7) which can be
satisfied. We combine (4, 8) with (5, 7) to be
2-palindrome (4, 8) (5, 7) and add it into the
set U2.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),
(2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}
There is no 1-palindrome which can be
satisfied.
U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6),
(2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}

(1-6)
We take the 1-palindrome (5, 7) from U1.
Check all 1-palindromes from U1.
There is no 1-palindrome which can be
satisfied.

(2) k = 3, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8),
(5, 7)}, U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3,
6), (2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}, U3 =
{}
(2-1)

We take the 2-palindrome (1, 8) (3, 6) from
U2.
Check all 1-palindrome from U1.
There is no 1-palindrome which can be
satisfied.
U3 = {}

(2-2)
We take the 2-palindrome (1, 8) (5, 7) from
U2.
Check all 1-palindrome from U1.
There is no 1-palindrome which can be
satisfied.
U3 = {}

(2-3)
We take the 2-palindrome (2, 9) (3, 6) from
U2.
Check all 1-palindrome from U1.
There is no 1-palindrome which can be
satisfied.
U3 = {}

(2-4)
We take the 2-palindrome (2, 9) (4, 8) from
U2.
Check all 1-palindrome from U1.
There is a 1-palindrome (5, 7) which can be
satisfied. We combine (2, 9) (4, 8) with (5, 7)
to be 3-palindrome (2, 9) (4, 8) (5, 7) and add
it into the set U3.
U3 = {(2, 9) (4, 8) (5, 7)}

(2-5)
We take the 2-palindrome (2, 9) (5, 7) from
U2.
Check all 1-palindrome from U1.

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-374-

There is no 1-palindrome which can be
satisfied.
U3 = {(2, 9) (4, 8) (5, 7)}

(2-6)
We take the 2-palindrome (4, 8) (5, 7) from
U2.
Check all 1-palindrome from U1.
There is no 1-palindrome which can be
satisfied.

(3) k = 4, U1 = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8),
(5, 7)}, U2 = {(1, 8) (3, 6), (1, 8) (5, 7), (2, 9) (3,
6), (2, 9) (4, 8), (2, 9) (5, 7), (4, 8) (5, 7)}, U3 =
{(2, 9) (4, 8) (5, 7)}, U4 = {}
(3-1)

We take the 3-palindrome (2, 9) (4, 8) (5, 7)
from U3.
Check all 1-palindrome from U1.
There is no 1-palindrome which can be
satisfied.
U4 = {}

Finally, we get the set U = U1 U� 2

…� U� n/2 which contains all palindrome
subsequences of S.
U = {(1, 4), (1, 8), (2, 9), (3, 6), (4, 8), (5, 7), (1,
8) (3, 6), (1, 8) (5, 7), (2, 9) (3, 6), (2, 9) (4, 8),
(2, 9) (5, 7), (4, 8) (5, 7), (2, 9) (4, 8) (5, 7)}

The all palindrome subsequences of S are as
follows:
(1, 4) AA
(1, 8) AA
(2, 9) CC
(3, 6) GG
(4, 8) AA
(5, 7) TT
(1, 8) (3, 6) AGGA
(1, 8) (5, 7) ACCA
(2, 9) (3, 6) CGGC
(2, 9) (4, 8) CAAC
(2, 9) (5, 7) CTTC
(4, 8) (5, 7) ATTA
(2, 9) (4, 8) (5, 7) CATTAC

5. Conclusions

In this paper, we proposed an algorithm to

solve the finding all palindrome subsequences in
a string. Palindrome subsequences occur
frequently in DNA sequences and have been
proved to be critical for some biological
characteristics. Our algorithm provides an
effective tool for the related research.

References

[1] Allison, L. (2004) Finding Approximate
Palindromes in Strings Quickly and Simply
[2] Choi, Charles Q (2005) DNA palindromes
found in cancer. The Scientist
[3] Gusfied, D. (1997) Algorithms on Strings,
Trees, and Sequences: Computer Science and
Computational Biology, Cambridge University
Press, New York.
[4] Manacher, D. (1975) A new Linear-Time
“On-Line” Algorithm for Finding the Smallest
Initial Palindrome of a String. J. Assoc. Comput.
[5] Proto, A. H. L. and Barbosa V. C. (2002)
Finding Approximate Palindromes in Strings.
Pattern Recognition
[6] Tanaka, Hisashi; BERGSTROM, Donald A;
YAO, Meng-Chao and TAPSCOTT, Stephen J
(2006) Large DNA palindromes as a common
form of structural chromosome aberrations in
human cancers. Human Cell
[7] Wen, W. H. (2006) Longest Palindrome and
Tandem Repeat Subsequences

The 24th Workshop on Combinatorial Mathematics and Computation Theory

-375-

